The Alpha AXP Architecture and 21064
Processor

Edward Mclellan

Digital Equipment
Corporation

36 IEEE Micro

The Alpha AXP 64-bit architecture forms the basis for a series of high-performance computer
systems. Building on almost 10 years of internal research into reduced-instruction-set com-
puter architecture, Alpha AXP emphasizes performance and longevity. The 21064 micropro-
cessor is the first Alpha AXP implementation. Operating at speeds up to 200 MHz, this chip
serves as the heart for current systems that offer the highest microprocessor-based perfor-

mance in the industry.

he 64-bit Alpha AXP architecture'? and

the first implementation DECchip

21064 microprocessor grew out of a

multiyear effort at Digital. Our aim was
to develop a computer family capable of leader-
ship performance for the foreseeable future over
a wide variety of applications. Combining
strengths in semiconductor technology, computer
architecture, hardware design, operating systems,
compilers, and applications software, this effort
recently delivered a series of such machines. Sys-
tems range from personal computers to worksta-
tions to supercomputers. Operating systems
support includes OpenVMS, full 64-bit Unix (DEC
OSF/1), Microsoft Windows NT, and soon, na-
tive Novell NetWare. Figure 1 shows the pack-
aged DECchip 21064 microprocessor.

Our rich history of computer design spans 35
years and includes the 16-bit PDP-11 and 32-bit
VAX computer families. The Alpha AXP architec-
ture represents a new step in that evolution, one
that combines full 64-bit address and data capa-
bilities with principles of RISC architecture. Roots
of the AXP development go back to the mid 1980s,
when multiple investigations of RISC technology
culminated in the definition of the internal Prism
architecture. That definition included the valu-
able experience of completely designing a 32-bit
microprocessor.?

In 1988, a task force chartered with exploring
future enhancements to the VAX concluded that
a new architecture would soon be necessary to
extend the increasingly cramped 32-bit address-
ing space of the VAX.* The Alpha AXP architec-
ture went much further than that by addressing
features such as multiple-instruction issue, mul-
tiple processors, and operating system indepen-
dence. The Alpha AXP architecture benefits from
the experience of a broad base of computer ar-
chitects, hardware designers, and systems and ap-
plications software experts. The architecture
strives to anticipate future trends as much as it
attempts to provide current solutions. This archi-
tecture provides flexibility for both architectural
evolution and hardware implementation over time
in a variety of ways.

For any modemn computer architecture to be
successful, though, access to a strong semicon-
ductor design and technology base is essential.
Our semiconductor development began in the late
1970s with a double-metal NMOS process designed
specifically to support high-performance micropro-
cessors. Since then, our designers have developed
four generations of CMOS technology. Each gen-
eration allows a straightforward path to shrink pre-
vious designs for advantages in speed, power,
reliability, and cost. The 21064 microprocessor is
designed in the CMOS~4 process, which offers 0.75-

0272-1732/93/0600-0036$03.00 © 1993 IEEE

um feature sizes, three levels of aluminum interconnection,
and a 3.3-volt power supply.

A new class of systems requires a tremendous amount of
software development. Compatibility with older code was
paramount for taking fullest advantage of the new architec-
ture. The software task required more time than the hard-
ware development. Therefore, we staged the hardware design
to produce early development units that could assist soft-
ware efforts. Prior to the final CMOS-4 version of the chip,
we produced a CMOS-3 device that offered smaller caches
and had no floating-point hardware support. This strategy
allowed operating systems and internal developers 1o run
code on actual AXP systems almost two years before the
product shipment date. At the same time, the final hardware
design got to take advantage of the latest semiconductor pro-
cess advances.

Compatibility with a large, existing customer base of soft-
ware also concerned us. Rather than burden the hardware
with extensive support hooks, or restrict the architecture with
compatibility issues, our design efforts adopted the idea of
binary translation. Binary translation involves converting ex-
ecutable programs compiled for one hardware platform to
another without requiring recompilation from original source
code. For maximum reliability, the challenge also includes a
runtime environment to support translation of almost all user
mode applications and an interpreter to execute code that is
not exposed by the initial translation. All of this must come
together to produce a translated image that equals or ex-
ceeds the performance of the system being replaced. Trans-
lators for both VAX and Mips systems to AXP are available
and have been invaluable in the highly successful migration
of both system and user programs.

Alpha AXP architecture

Perhaps the most notable difference exhibited by the Al-
pha AXP is found not in a list of its features, but in its careful
avoidance of quick-fix solutions to a variety of problems in
computer design. Instead of a segmented address space, which
can be more difficult to program, the design provides a large,
64-bit linear address space. Virtually all other computer manu-
facturers have 64-bit extensions planned, but only one other
currently delivers 64-bit hardware. Only Alpha AXP offers a
full 64-bit operating system with DEC OSF/1. A clean start
rather than extension of a 32-bit architecture avoids hard-
ware baggage that can include “orphan” 32-bit instructions
(for example, 32-bit shifts) and other compatibility issues as-
sociated with old 32-bit software.

In Alpha AXP, all operations, including a small set for effi-
cient 32-bit support, read and write full 64-bit quantities. To
facilitate multiple-issue implementations, the architecture ex-
plicitly avoids condition codes, special registers, side effects,
suppressed instructions, and branch delay slot instructions.
These features fit well with single fetch and issue processors,

Figure 1. The packaged 21064 microprocessor.

but only complicate multiple-issue designs and often lead to
performance bottlenecks. In a machine executing more than
one instruction 4t a time, a single copy of any resource can
become a point of contention. Likewise, a single skipped or
forced instruction execution, as in the case of branch delay
slots, does not fit well with the notion of a machine that
fetches and executes multiple instructions each cycle.

The architecture also avoids direct hardware support for
features that, although otherwise useful, are either uncom-
mon or would likely limit the performance of anticipated
systems through cycle-time restriction. Instead, the design
provides support in a manner consistent with the architec-
tural directions, but using software assistance for full func-
tionality. Examples include the lack of direct-byte load/store
instructions and precise arithmetic exceptions. A critical shift
and multiplexer path is necessary for byte loads that can
threaten cycle time. In addition, byte store operations require
costly read-modify-write sequences in systems incorporating
common error-correction code protection schemes. Byte writes
with such ECC schemes can complicate and slow critical write-
back cache designs. Recent experience has shown that some
byte oriented codes run much faster when efficiently using
the natural 64-bit (8-byte) data width and the byte manipula-
tion support instructions provided.

Where byte operations are required, as in I/O support rou-
tines, designers of the first Alpha AXP PC have successfully
used alternatives such as encoding sizes on address bits and
encapsulating the byte manipulation code to port the Mi-
crosoft Windows NT operating system without changes to
low-level driver code. In fact, byte manipulation encapsula-
tion is identical to I/O operation encapsulation, which is nec-
essary for using Intel X86 in and out instructions with high-level

June 1993 37

AXP/21064

The Alpha AXP architecture is a
traditional RISC load-store
architecture—all data moves
between memory and registers

without computation.

languages. A driver that already abstracts /O operations need
not be modified at all for use on Alpha AXP platforms.

As high-end processors such as Cray have done for years,’
hardware support for arithmetic traps is imprecise with re-
spect to the instruction stream. An operator can choose pre-
cise trap behavior when necessary through the use of the
trap barrier instruction, typically during program debugging.
General use of the trap barrier, however, can allow precise
arithmetic exception behavior at all times without apprecia-
bly degrading performance. Measured differences on the 21064
range from less than 1 percent in integer to between 3 and 25
percent in floating-point codes. Advantages in cycle time and
design complexity allowed by this approach, however, com-
pare favorably with these differences.

The Alpha AXP architecture is a traditional RISC load-store
architecture. That is, all data moves between memory and
registers without computation. Computation is done between
data in general-purpose registers only.

Operating system independence. Anticipating the need
to support multiple operating system ports, a set of privi-
leged software subroutines, called PALcode, can tailor some
of the lowest level hardware-related tasks unique to a par-
ticular operating system. For flexibility in service, interrup-
tions, exceptions, context switching, memory management,
and error handling all have controlled entry points in PALcode.
Neither the hardware nor the operating system then is bur-
dened with a bad interface match, and the architecture itself
is not biased toward a particular computing style. In addi-
tion, since PALcode mediates all access to physical hardware
resources, including physical main memory and memory-
mapped 1/O device registers, users can also tailor the code
for special purpose environments such as real-time and highly
secure computing.

Addressing. Virtual addresses are a full 64-bits wide, al-
though subsets are allowed. The AXP employs little-endian
byte addressing, similar to Intel X86 and VAX computers.
Systems can access both big- and little-endian data using the
byte manipulation instructions with a single instruction modi-
fication to the sequence. In fact, Digital and its partners are
building both big- and little-endian systems and software.

38 IEEE Micro

Implementations may subset the address width, to a mini-
mum of 43 bits with sign extension, but must check all 64
bits for compatibility with future systems. The AXP does virtual-
to-physical-address mapping on a per-page basis, and its pages
are 8 Kbytes with future expansion defined.

Data types. The fundamental unit of data is the 64-bit
quadword, although the architecture also supports 32-bit
longwords. Floating-point data types include both VAX and
IEEE formats in both 32-bit single- and 64-bit double-precision
formats. An extended-precision floating-point format is not
included, but the designers have anticipated expansion by
reserving a function field. Byte and word (16-bit) data types
are not supported by direct load-and-store instructions but
by short sequences of instructions. They can be manipulated
in registers using normal arithmetic and the byte manipula-
tion instructions.

Processor state. The hardware processor state includes
separate 32-entry by 64-bit integer and floating-point register
files. R31 is always zero in each file. Completing the required
state are a longword-aligned, 64-bit program counter, floating-
point control register for IEEE compliance, and a pair of lock
registers for multiprocessor support. If the FETCH/FETCH_M
instructions, or VAX-translated images are supported, addi-
tional hardware state is required.

The Privileged Architecture Library (PAL) gives designers
the option of adding PAL state to the existing hardware state.
The PALcode completes the architectural definition in an
operating-system specific way. The hardware designers de-
termine the implementation of PAL state, which can range
from full hardware to full software or a combination of the
two based on design constraints. Typical PALcode state in-
clude kernel stack pointer, user stack pointer, and translation
look-aside buffers as well as a process-unique value for threads
and a processor number for multiprocessor dispatch.

Instruction formats. As shown in Figure 2, the architec-
ture uses four fundamental instruction formats: operate,
memory, branch, and CALL_PAL. All instructions are 32-bits
wide and contain zero to three register fields. To minimize
register file port requirements, register B (RB) is never writ-
ten and register C (RC) is never read.

The operate format includes arithmetic, logical, shift, and
byte manipulation instructions. Scaled add/subtract and com-
pare bytes instructions allow efficient operation on arrays
and strings. Conditional move instructions for both integer
and floating-point data, which test one input operand and
optionally transfer data from another, remove branches in
favor of a single instruction. Rather than using a single condi-
tion code location, the compare instructions write directly to
any general-purpose register. They include an unsigned com-
parison operation for extended-precision arithmetic. There is
no integer divide instruction. Where necessary, a 128-bit mul-
tiply can be used for emulation. The architecture enables
traps on a per-instruction basis to avoid mode registers, and

provides some longword (32-bit) operations for compatibility.

Memory format instructions are mainly loads and stores,
but also include some additional instructions. Loads and stores
use two registers, specifying a base address and a data source
or destination. The effective address calculation sign extends
a 16-bit displacement to 64 bits and adds the 64-bit base
register value. The architecture also provides load-and-store
operations for longword (32-bit) quantities. General opera-
tions move aligned data quantities and trap on unaligned
references, but instructions that mask the unaligned address
bits and do not trap are available for use with the byte ma-
nipulation instructions. Calculated jump instructions also use
the memory format; these instructions determine the target
address directly from the base address without using the dis-
placement field. The unused bits, however, are defined as
hints for hardware prefetching mechanisms to improve pipe-
line efficiency. The additional hint information designates a
likely target, allowing the hardware to continue fetching be-
fore the true target is available from the register file. If the
hint is wrong, a misprediction restart costs no more time than
if the hardware stalled waiting for the true address. A pair of
load address instructions also use the memory format and
allow a convenient way to create large constants using the
16-bit displacement field.

The design provides branch format instructions for both
integer and floating-point data. These instructions test a single
register for an operation-code-specified condition, and either
branch to the target or fall through. To calculate targets, the
instructions add a 21-bit longword displacement field to the
updated program code (PC) resulting in a +4 Mbyte relative
branch range. The large range effectively reduces the need
for branches around or to other branches.

The CALL_PAL format instruction contains only a 6-bit
operation code field and 26-bit function field. There are no
explicit registers because individual instructions can be redefined
for specific use. When executed, these instructions dispatch to
PAL routines that perform an atomic, or uninterruptable se-
quence of instructions. CALL_PAL instructions then can serve
to emulate complex instruction-set computer functionality.

Shared-memory multiprocessing. Scalable performance
was an integral part of the architectural definition. Since cycle
time and multi-issues for single processors are likely to be-
come limiting factors over the lifetime of the architecture,
multiprocessor support was critical to achieving both perfor-
mance and longevity goals. The basic multiprocessor inter-
locking primitive for updating a shared-memory location is a
RISC-style load-locked, in-register modify, store-conditional
sequence of instructions. If the sequence completes without
interruption, exception, or an interfering write from another
processor, the store-conditional instruction succeeds and re-
turns status indicating that an atomic update was performed.
Otherwise, the store-conditional fails, and the program must
branch back and retry the sequence. This mechanism scales

Operate format
31 26 21 1312 5 0
Literal | 1| Function
oP RA | RB| ///|0| Function [RC
RB Function
6 5 5 1 5

Integer, literal
Integer, register
Floating-point

Memory format
31 26 21 16 0

OP RA RB Displacement

6 5 5 16

Branch format
31 26 21 0

OP RA Displacement

6 5 21

CALL_PAL format

31 26 0
OP Opcode
. RA Register A
OP Function RB Register B
RC Register C
[26

Figure 2. Instruction formats.

well with processor performance and allows multiple simul-
taneous noninterfering sequences.

The Alpha AXP architecture is the first RISC architecture to
offer a relaxed, or weak memory-ordering model. SPARC V9
and PowerPC have more recently announced support for a
weak-ordering model. Relaxed ordering implies that the se-
quence of reads and writes as viewed by another processor
need not be in order. Multiprocessors that employ strict-
ordering models are possible, but can be subject to perfor-
mance limitations. For example, if a processor is designed to
retry writes that result in errors, a strict-ordering model im-
plies that the retry must complete before any other read or
write occurs. This constraint excludes pipelined memory sys-
tems that would otherwise allow operations begun prior to
the error to complete before, and out of order with the retry.

When strict ordering is required, as is the case in some
1/O or multiprocessor synchronization operations, the Alpha
AXP architecture specifies a memory barrier (MB) instruction
to force serialization of operations. Software then controls
serialization, enforcing it only when necessary. The lack of
implicit ordering enables a variety of high-performance imple-
mentation techniques.

June 1993 39

AXP/21064

iCache] The 21064

The 21064 microprocessor is
the first implementation of the
Alpha AXP architecture.®” This
1.4 x 1.7-cm CMOS chip incor-
porates 1.68 million transistors

Branch
history table

Tag Data —

Address bus

v

EBox I1Box FBox
Multiplier | Prefetcher »

Multiplier/ using a 0.75-um, three-metal

Adder Resource adder process. Figure 3 shows the
Shifter conflict id Data bus (128 bits) > chip’s block diagram and Fig-
Logic box calclzlc:;tion Divider ure 4 shows a photograph of
T8 the chip itself. The design pro-

Pipeline BIU vides high performance through

IRF ‘” control > FRF superscalar (two instruction is-

§ | 4 sue) operation with an excep-

v v External cache C°""’°'> tionally high frequency internal
ABOX clock cycle. Production chips

Write buffer | Address Data stream Load | | | and systems are available ai
generator | translation buffer | silo clock speeds up to 200 MHz.

Despite the fast internal cycle

: time, the 21064 provides a flex-

DCache External system interfac<> ible external interface that can

Tag Data ‘I | easily accor_nmoqz}te a rang? of
system designs. These designs

are well within the range of stan-
Figure 3. The 21064 block diagram. dard interface devices due to the

on-chip programmable system
clock. System designs can run the CPU at from two to eight
times the system clock frequency. Initial system designs range
from PC to workstation to supercomputer class. They offer
the highest microprocessor-based system performance in the
industry as measured by the System Performance Evaluation
Corporation (SPEC) suite of benchmark programs. (SPEC
benchmarks, a series of programs measuring both speed and
throughput, have become the standard for measuring com-
puter performance.)

Cycle time implications. Overall performance involves
many factors, but the two controlled primarily by the micro-
processor designer are cycle time and the amount of work or
instructions completed per cycle. Experience developing an
earlier short cycle-time microprocessor! combined with simu-
lations of possible design alternatives reinforced the RISC con-
clusions that the more potent lever was cycle time reduction.
Based on the aggressive cycle time goal of typical parts at 150
MHz and fast parts at 200 MHz, the design supports two levels
of cache hierarchy. The high speeds require on-chip caches to
supply data and instructions at the cycle time rate (5 ns). How-
ever, die size and speed constraints limit the maximum size of
that cache, which then can reduce performance. A large oft-
chip, second-level cache can mitigate this effect. The combi-
nation provides better overall performance and promises a
greater rate of improvement as process density increases. The
relative performance gain in increasing a small cache is greater
Figure 4. The 1.4 x 1.7-cm CMOS 21064 chip. than made available by increasing a large cache. In addition, a

40 [IEEE Micro

small on-chip cache can scale with CPU cycle time much bet-
ter than a large off-chip cache, allowing a design to take full
advantage of advances in process technology.

To maintain the cycle time goals, we carefully evaluated
all potential features—even a slight cycle time slip would
likely cost more performance than the feature could give us.
This philosophy extended through the ongoing architectural
definition to avoid requirements that could limit implementa-
tion. For example, we postponed the decision regarding in-
clusion of the scaled add-and-subtract instructions in the
architecture until we could demonstrate that implementations
would not incur an adverse internal cycle time hit.

Dual issue. Dual-issue capabilities also exhibit cycle time
influences. Rather than allow complete dual-issue flexibility,
which only improves performance by an approximate incre-
ment of 2 percent over the final design, our design slightly
restricts the instruction pairs for multiple issue. Compilers
can group dual-issue operations in pairs when possible, but
excess code expansion arises due to instruction padding if
they are required to always align within the pair as well.
When necessary, the hardware swaps pairs capable of dual
issue. Hardware also serializes pairs that cannot dual issue to
streamline internal control and data paths. All important pairs
allowed by combinations of functional units can dual issue.

Since load-and-store operations predominate in RISC codes,
the design provides a separate address unit to allow load and
stores to execute with operate instructions. Table 1 shows
the general instruction pairings for dual issue. There are only
two exceptions to these rules. Branches cannot dual issue
with stores of the same format because they share a register
file port, and stores or branches cannot dual issue with oper-
ates of a different format because they share an instruction
bus. For example, integer stores cannot dual issue with

Table 1. General dual-issue rules.

Instruction A Instruction B

Integer operate
Load/store
Branch

Floating-point operate
Operate
Load/store/operate

floating-point operates.

Pipeline. As shown in Figure 5, the integer and floating-
point pipelines are, respectively, seven- and 10-stages deep.
The first four stages are common to the two pipes and com-
prise the instruction fetch-and-issue section of the chip. Each
stage can process up to two instructions in parallel. In the
instruction fetch (IF) stage, the processor fetches a pair of
instructions each cycle from the 8-Kbyte instruction cache.
The swap (SW) stage controls instruction prefetching, doing
branch prediction and cache index calculation as well as the
swap or serialization operation described earlier. The issue-
zero (10) stage checks for intrafetch dependencies. This stage
also completes the decoding and set up for the issue-one (11)
stage, which includes the register conflict detection and in-
struction issue to the datapath function units. Both the inte-
ger and floating-point register files are read in the I1 stage to
supply data to integer, floating-point, load/store, and branch
calculation units as shown.

The integer calculation pipeline writes results back to the
integer register file in pipe stage 6, while floating-point cal-
culations write to the floating-point register file in stage 9.
Pipe stage 4 resolves branches, after which the prefetcher is
redirected, resulting in a four-cycle misprediction penalty.

0	1	2	3	4	5 I 6	7 I 8	9		
IF	Sw	10	n	A1l	A2 I WR				
				F1	F2 I F3	F4 I F5	FWR		
Instruction	I lssue		g()ALU	I	I I				
fetch		decode		1					
	[(FP) [Fadd —»{ Fmul - [Fmull—»{ Add+Rnd	- Write]						
	Swap+		Issue +						
I	branch		reg. (BR) add		I	I I			
	prediction		read						
!		I	/(LD/ST)						
				Displacement add	cache			hit	

At ALU-one IF Instruction fetch ITB Instruction translation buffer

BR Branch 10 Issue-zero LD/ST Load/store

DTB Data stream translation buffer FP Floating point Sw Swap

F1 Floating-point one FWR Floating write WR Write back

Figure 5. Pipeline.

June 1993 41

AXP/21064

Branch instructions and condition codes

Branches pose an increasingly severe problem in
heavily pipelined and superscalar computer designs as
a pipeline flush costs more potential instruction issue
slots. The Alpha AXP architecture offers an advantage in
handling branch instructions. Most computer architec-
tures include condition codes to hold the result of arith-
metic operations that can later be used to determine the
outcome of branches. Unfortunately, the condition code
register itself can become a point of respurce contention
if you assume that multiple instructions are executed
simultaneously.

Recognizing this problem, some architectures offer
combined compare-and-branch instructions that both re-
duce the number of instructions and eliminate the inter-
mediate condition code storage. These instructions,
though, force the arithmetic operation to be performed
immediately before the branch. Arithmetic operations
typically are one of the last pipeline stages, which there-
fore increases the misprediction penalty. In a supersca-
lar implementation, it may be possible to resolve the
branch decision early and overlap its execution with
unrelated instructions.

The Alpha AXP architecture does not use condition
codes. Instead, it resolves all branches based on the test
of a single register. In effect, any register can hold branch
condition information, eliminating the resource prob-
lem. In addition, since the branch need only test a single
register, all that is required to resolve any branch imme-
diately after reading the register file are the most- and

least-significant bits, and a zero detection, which could
be stored at register write time.

Loads that hit in the 8-Kbyte on-chip data cache write the
associated integer or floating-point register file in pipe stage
6, simultaneously with integer calculations. The chip checks
data cache misses in the large off-chip backup cache under
complete CPU control. It only generates a system read block
command if both caches miss. Instruction cache misses also
get checked in the backup cache and fetch a second sequen-
tial 32-byte block into an on-chip streaming buffer. If the
CPU reports an additional instruction cache miss that hits in
the stream buffer, the data is simply moved into the cache
and the next block is fetched in parallel with instruction
execution.

Despite the apparent two-cycle delay for integer calcula-
tions, data is available after the first cycle in most cases. As
shown in Figure 6, an extensive set of data bypass paths
allows many back-to-back dependent operations to execute

42 |EEE Micro

at fully pipelined speeds. In all, the chip uses 45 different
bypass paths to minimize the effect of pipeline latency on
dependent operations. All register conflict checking is done
in hardware. Up to 22 operations thus can be in various
stages of completion simultaneously, including 14 within pipe-
line stages 0 to 6, three in the extended floating-point pipe,
three outstanding load misses, a floating-point division, and
an integer multiplication.

Branch handling. With such a deep pipeline, branch han-
dling is particularly important. The Alpha AXP architecture
reduces branches through the use of the conditional move
instructions and also includes hints for hardware-assisted
branch prediction. The 21064 uses these hints and includes
additional features. The chip can statically predict conditional
branches using the sign of the displacement field to predict
backward branches as taken and forward branches as not
taken. In addition, the 21064 contains a 2K by 1-bit branch
history table for dynamic prediction that provides approxi-
mately 80 percent accuracy for most programs.)

The instruction prefetcher also contains a last-in, first-out
stack of recent subroutine return addresses used to predict
return paths for subroutines. The stack is repaired during pipe-
line flushes and therefore allows two additional benefits. As
explained in the box, branch misprediction can become a per-
formance issue at these fast cycle times due to the length of
the pipeline. The chip uses the subroutine return stack to source
the alternate, and correct, branch path one cycle earlier than
the program counter datapath could provide it upon branch
misprediction. In addition, the stack is used to accurately pre-
dict the return address for exceptions, since most exceptions
(such as translation look-aside buffer miss) as measured by
frequency, return to the original routine.

Integer unit. The integer register file contains thirty-two
64-bit general-purpose registers. It provides six ports, includ-
ing four reads and two writes to allow the parallel execution
of both integer calculations and load, store, or branch opera-
tions. The data path includes dedicated adder, shifter, multi-
plier, and logic units. Both the logic unit and adder provide
results in one cycle. The shifter requires two cycles for results
but is fully pipelined. The multiplier is not pipelined for area
savings, and it supports the Alpha AXP UMULH instruction
that returns the upper 64 bits of a 128-bit product for extended-
precision operations and integer division support.

Floating-point unit. The floating-point unit combines
maximum throughput with short latencies. It contains a 32-
entry by 64-bit register file with three read and two write
ports. The multiplier uses a radix-8 Booth algorithm in a fully
pipelined two-way interleaved array. The rounding opera-
tion is completed simultaneously with the last adder stage for
all operations. For compatibility, this unit supports both VAX
and IEEE single- and double-precision data formats. It can
initiate new instructions every cycle with dependent opera-
tions requiring six-cycle latency. The fast cycle-time goal trans-

lates into Jonger total latency as measured in cycles. For many
floating-point codes, though, throughput and optimized com-
piler algorithms deliver exceptional performance as demon-
strated by the >200 SPECfp92 values measured on DEC 10000
systems.

Address unit. The address unit performs all load-and-store
operations. To do so in parallel with other units, it contains a
dedicated displacement adder rather than sharing the integer
calculation adder. The address unit contains a 32-entry data
translation look-aside buffer. Entries can be used to translate
single pages or groups of contiguous pages. The unit allows
ranges of 8 Kbytes, 64 Kbytes, 512 Kbytes, or 4 Mbytes for
each entry. The address unit can process up to three out-
standing load misses to avoid blocking nondependent
instructions.

Store instructions aggregate data in a 4-entry X 32-byte write
buffer. The write buffer reduces off-chip bandwidth require-
ments by merging data from adjacent stores. It also allows
early service for critical load data by temporarily delaying
stores that would have otherwise occupied the data bus. The
AXP architecture allows this reordering to improve perfor-
mance; the memory barrier instruction can inhibit the reor-
dering when necessary. The address unit allows back-to-back
load-and-store operations in any order by accessing the cur-
rent store tag with the last store data in separate cache tag
and data arrays. The address unit supports wrapped reads
(target word first) on primary cache misses, while filling 32-
byte cache blocks. This minimizes the latency incurred when
the return data is immediately needed. If the pipeline was
blocked waiting for load data, it can continue as soon as the
target word is returned at the same time that it fills the re-
mainder of the cache line in the background.

Pipeline control/exceptions. The pipeline can be inter-
rupted for a number of reasons including branch
mispredictions, instruction cache misses, and interruption and
exception conditions. Either a conditional branch or calcu-
lated jump instruction can produce branch mispredictions.
They do not require hardware unrolling because both
mispredictions are detected before the write back stage. In-
terruptions and exceptions cause traps to PALcode. These
traps resemble mispredictions but also drain the pipeline
before executing the new flow. Hardware reduces the idle
pipeline time by overlapping the drain with the prefetch of
the new instructions.

Privileged Architecture Library. A unique feature of the
AXP architecture is the privileged architecture library. The
PAL routines used with the 21064 allow flexibility in the defi-
nition of a hardware/software interface by assisting some
hardware-related tasks and completely emulating others. For
example, the hardware traps to PALcode to parse and service
interruptions as well as to update translation look-aside buffers.

A second method of entering PALcode is through explicit
CALL_PAL instructions. The chip supports 128 direct hard-

suBQ RO, R5, R1 ; cycle 0
ADDQ R1, R2, R3 ; cycle 1
CMPLT R3, #500, R4 ; cycle 2
BEQ R4, Target ;cycle 3

Figure 6. Multiple bypass paths allow many instructions to
execute in sequential cycles despite the deep pipeline.

ware dispatches for individual CALL_PAL-type instructions.
Upon execution, a CALL_PAL instruction both branches to
the selected PAL routine and enables PALmode privileges.
These privileges allow PAL routines to access a complete
internal state, otherwise hidden from the architected hardware/
software interface. PAL can physically access both instruction
and data-stream memory by disabling memory mapping, and
assure atomic sequences of instructions by disabling inter-
ruptions. CALL_PAL routines support a variety of operations,
generally too complex to be implemented in hardware. For
example, the PAL provides the swap process context opera-
tion as a CALL_PAL instruction that can be unique for each
operating system.

PALcode routines can be completely customized because
they use a superset of the AXP instruction set. The architec-
ture exclusively reserves five operation codes for PAL which
allows each implementation to define these instructions for
best use. A hardware implementation and PAL routines form
a matched set that together make up the operating system
and programmer interface. Since only the interface must re-
main consistent between implementations, future chips have
complete flexibility to make low-level hardware trade-offs
without impacting existing code. In addition, designers can
redefine this interface to meet the needs of each operating
system. The 21064 currently supports three operating sys-
tems with individual interface requirements.

Performance tuning. In the first production implemen-
tation of any new architecture, performance feedback is im-
portant for both software tuning and future hardware projects.
With improving integration and cycle times, this information
is increasingly difficult to obtain at the pin interface, or is so
far removed from program execution that it is of little value.
The 21064 contains two methods of providing more relevant
information directly from running systems.

First, the Alpha AXP architecture offers a cycle counter
capable of recording absolute and process virtual times at
very fine intervals (single cycle on 21064). Its use, however,
requires code modification. Second, the 21064 contains on-
chip performance counters that count selected events and
produce interruptions upon counter overflow, Through the
use of PALcode and operating system utilities, these counters
can collect data on unmodified applications. The design pro-
vides two counters that can select from a variety of sources

June 1993 43

AXP/21064

Adr_h<33:5> Interface. To accommodate a range

Dat;Oe h<3:0> > of system designs, the interface is ex-
DataWe_h<3:0> tremely flexible. See Figure 7 for a draw-

TagOe ; ing of the chip interface. Although the

— At ——] chip operates with a 3.3-volt power sup-

TagCywe_h] ply, it can also interface with more com-

y vy — v ® mon 5-volt logic. Data bus widths of

System-dependent logic § g 128 and 64 bits for reduced-cost sys-

5 2= tems are available, and the system clock
& £ 8 speed can be set at any submultiple of
§§ Tagctl| | Tag Data/check 2 T the CPU speed from one half to one
8g RAM | | RAM RAM ZH¥{ eighth. We have designed a 25-MHz
N A A BCache g‘ < EISA bus-based system that uses a one-
(12.5 MHz — 66.7 M ‘ £ & to-six CPU clock divisor using standard

<« 29etV.SDP \J ol = PC interface parts. Even at 150-MHz CPU
Tag_h<33:n> operation, cooling only requires a heat

__ Data_h<127:0>, check_h<27:0> y N sink.

" Misc_out The chip supports up to 16 Gbytes
0sC Misc_in > of physical memory and an optional
> " System clock second-level back-up cache ranging in

> size from 128 Kbytes up to 16 Mbytes.

Figure 7. Chip interface. Three time domains exist in a typical system, with the
CPU executing out of the internal caches at up to 200 MHz, the backup cache
loop ranging from one third to one sixteenth of the CPU frequency, and the
remaining system logic executing at one half to one eighth of the CPU

frequency.

Figure 8. Alpha clock delay.

including instruction issue, pipeline stalls, and instruction mix
as well as cache miss, branch misprediction, and two input
pins that can be further broken down to gather external sys-
tem data.

44 IEEE Micro

The cache access path is combinatorial.
It can support a variety of static RAM
speeds, selectable through an on-chip
register at 3 to 16 times the CPU clock
cycle time. The interface supports par-
ity or ECC protection. In the event of a
back-up cache miss, the chip issues a
system command to perform the necessary read or write
operation. System commands interact with board logic in a
handshake manner and operate at the selected system clock
multiple, not the CPU clock speed.

Multiprocessing. The chip provides multiprocessing sup-
port in a flexible manner. Through valid, dirty, and shared
(write protected) tag control signals, we can configure a write-
back external cache on the 21064 to support a variety of
cache coherence policies. Digital’s systems use a conditional
write-through policy although the chip can also support an
ownership policy. Internal cache invalidate controls allow a
system to maintain coherence of the internal cache. Through
pin support for maintaining a backmap, the system can also
implement cache invalidate filtering based on the contents of
the primary cache if desired.

Clocking. Since it operates at speeds of up to 200 MHz,
designing the 21064 required us to rethink many aspects of
CMOS circuit design. Most critical was the decision to use a
single-wire, two-phase clocking scheme. This type of clock-
ing helps to eliminate dead time between phases. To ensure
correct latching operation, though, the clock edge rate had
to be extremely fast to avoid race-through of the latch data.
Our solution included a very large clock driver with a final
stage containing 10-11/64-inch-wide PMOS and 4-5/64-inch-
wide NMOS devices. The driver switches the clock load in

Table 2. Measured performance under OpenVMS AXP V1.
DEC 3000 DEC 3000 DEC 4000 DEC 7000 DEC 10000
Model 400 Model 500 Model 610 Model 610 Model 610

CPU frequency (MHz) 133 150 160 182 200
BCache size (Kbytes) 512 512 1,000 4,000 4,000
TPC-A (Rdb v.6)* NA NA NA 302 NA
SPECint92 63.8 72.6 81.2 94.8 104.3
SPECfp92 112.2 126.0 143.1 1821 200.4
SPECrate_int92 NA NA NA NA NA
SPECrate_fp92 2,631.6 2,967.4 3,317.1 4,126.0

2 process 6,214.5 8,135.1
3 process 11,859.8
4 process 15,739.4 17,187.2
Linpack 100 x 100** 26.4 30.2 36.3 38.6 425

1,000 x 1,000** 90 107 114 141 155
Perfect BM suitet 18.1 204 229 26.0 28.6
Cernlib (CERN units) 16.9 19.0 21.0 23.6 26.0
Livermore loops 18.7 21.3 22.9 25.6 28.1
Slolom patches 5,644 6,022 6,384 7,018 7,248
SPECint89 65.8 73.5 83.7 951 104.5
SPECfp89 150.6 169.9 188.4 2442 268.6
SPECmark89 108.1 121.5 136.2 167.4 184.1
* Transactions per second
** Project linear scaling for microprocessor configurations
1 Geometric mean

0.5 ns, drawing a peak switching current of 43A. We exten-
sively analyzed the clock both to ensure the integrity of the
supply voltage during switching and to guarantee that the
adjacent latches saw very little clock skew for proper opera-
tion. To address the supply voltage problem, we added 0.13
UF of on-chip decoupling capacitance. This was sufficient to
supply all the charge associated with a complete CPU cycle
with only 10-percent degradation of the supply voltage.

The skew problem required analysis of the 1.2-million-
element RC clock grid. We used a simulator derived from the
Carnegie-Mellon AWEsim circuit simulation program to ex-
amine the grid at 10-ps intervals. As shown in Figure 8, a
monotonic clock wave propagates outward from the center
clock driver. Any inward movement of the wave or large
discrepancies would indicate potential timing hazards in the
design. Such analysis proved necessary for correct operation
of the chip, as early simulation results did, in fact, identify
errors in the grid connection.

System performance
Performance tuning is an ongoing effort with work con-
tinuing in both compiler algorithms and optimizations as well

as systemn tuning. However, as shown in Tables 2 and 3 (next
page), initial data demonstrate excellent performance. These
tables include results over a variety of commonly used bench-
marks under both OpenVMS AXP V1 and DEC OSF/1 V1.2.
Both SPECint92 and SPECfp92 values establish a new high
point for system performance. Linpack among other floating-
point intensive benchmarks demonstrates impressive float-
ing-point capability, with the 1,000 x 1,000 values representing
greater than 75 percent of the peak theoretical rate. Integer
performance is equally impressive—the DEC 3000 Model 500X
workstation achieves a SPECint92 rating of over 110. The
more recent SPECrate benchmarks show nearly linear scal-
ing across all multiprocessor configurations as demonstrated
by the SPECrate data run under OpenVMS. [For a fuller de-
scription of SPEC benchmarks, see H.G. Sachs et al., “Design
and Implementation Trade-offs in the Clipper 400 Architec-
ture,” IEEE Micro, Vol. 11, No. 3, June 1991, pp. 18-21, 74-
80—FEd]

Table 4 shows results of benchmark performance for trans-
lated VAX images. The goal of the translation effort was to
match or exceed the performance of similarly priced VAX
systems. We met this goal, and many VAX user applications

June 1993 45

AXP/21064

Table 3. Measured performance under DEC OSF/1 V1.2.

*64 bit, double precision
**Geometric mean

DEC 3000 DEC 3000 DEC 3000 DEC 4000 DEC 7000 DEC 10000
Model 400 Model 500 Model 500X Model 610 Model 610 Model 610
CPU frequency (MHz) 133 150 200 160 182 200
BCache size (Kbytes) 512 512 512 1,000 4,000 4,000
SPECint92 74.7 84.4 110.9 94.6 103.1 116.5
SPECfp92 1125 127.7 164.1 137.6 176.0 193.6
SPECrate-int92 1,763.0 1,997.0 2,611.0 2,198.0 2,571.7 2,765.0
SPECrate-fp92 2,662.0 3,023.0 3,910.0 3,247.0 4,178.7 4,368.4
Linpack 100 x 100 26.0 29.6 39.8 35.0 36.9 40.5
1,000 x 1,000* 91.7 103.5 133.2 110.1 137.8 151.1
X1 1perf (2D Kvecss) 579.0 662 670 NA NA NA
X11perf (2D Mpix/s) 27.2 31.0 31.0 NA NA NA
Dhrystones/s V1.1 235,939 266,487 349,785 297,345 330,577 363,743
V2.1 238,095 263,157 333,333 294,117 333,333 357,142
Perfect BM suite** 18.4 20.7 26.2 23.1 26.4 29.2
Cernlib (CERN units) 18.8 21.3 28.9 23.2 26.0 29.0
Livermore loops** 17.4 19.5 26.3 223 25.4 27.8
Slalom patches 5,776 6,084 7,134 6,496 6,902 7,248
SPECint89 73.1 83.1 108.6 92.9 107.4 116.2
SPECfp89 141.7 162.8 208.9 177.0 249.8 2758
SPECmark89 1M1 126.1 160.8 137.3 175.5 192.1

Table 4. Measured performance of
VAX translated code under OpenVMS

THE ArpHA AXP ARCHITECTURE
marks a new beginning for Digital. The
combination of binary translation and

PALcode affords the luxury of starting

*Translated with DECmigrate

DEC 7000 DEC 3000 fresh, while maintaining strong compat-

Model 610 VAX Model 500 VAX ibility with existing code. The architec-

Alpha AXP* 7000/610 Alpha AXP* 4000/90 ture provides for growth in multiple

fields as well as flexibility in the imple-

SPECmark-89 44.43 42.09 34.37 32.77 mentation of exception handling and

SPECint-89 26.71 31.48 20.74 26.71 operating system specific state, We care-
SPECfp-89 62.36 51.08 48.14 37.55

fully considered trends in computing
such as multiple-instruction issue and
multiprocessing to avoid restrictive re-

report between 10 to 15 percent faster times running the
translated image on the AXP platform.

Table 5 shows results for translated MIPS images using
DECmigrate. As can be seen, performance of the translated
image approaches that of native compiled code on the DEC
3000 Model 500 system running DEC OSF/1.

46 IEEE Micro

quirements on future systems. Finally,
64-bit data capability and a 64-bit linear
address space, offering over four bil-
lion times the range of a 32-bit space, should provide ample
power and programming flexibility for years to come.

The goal of the chip design was to deliver the highest per-
formance single-chip microprocessor in the industry, capable
of forming the core of a range of systems from PC class to
high-end server. Benchmark results attest to that accomplish-

ment. A wide range of system designs are currently available
and expanding. In fact, the 21064 chip also forms the basis for
the announced massively-parallel processing (MPP) supercom-
puter from Cray Research, Inc. With the availability of Mi-
crosoft Windows NT and native Novell NetWare, the architecture
will offer an easy bridge for adding PC applications to the
growing list of over 2,500 OpenVMS and Unix applications
available today.

Unlike our previous architectures, Alpha AXP is an open
computer architecture. Mitsubishi Electric Corp. recently joined
over 35 other corporate Alpha AXP partners at all levels of
design integration and will offer a second source for the 21064
as well as new designs in the future. Within Digital, we are
currently designing multiple chips. High-performance parts
include a speed enhanced version of the 21064 that will double
the internal cache sizes and a next-generation, quad-issue
processor. Design of a high integration device for reduced
system cost is also in progress.

With the demonstrated performance of the current designs,
availability of software, and a growing list of suppliers, the
Alpha AXP architecture is well positioned for the future. B

Acknowledgments

Many people contributed to the design of the Alpha AXP
architecture, with a large majority of the current definition
attributable to principal architects Dick Sites and Rich Witek.
The 21064 design and verification team consisted of Dan
Dobberpuhl, Rich Witek, Randy Allmon, Rob Anglin, Dave
Bertucci, Sharon Britton, Linda Chao, Rob Conrad, Dan Dever,
Bruce Gieseke, Soha Hassoun, Greg Hoeppner, John
Kowaleski, Kathy Kuchler, Maureen Ladd, Mike Leary, Liam
Madden, Ed McLellan, Dirk Meyer, Jim Montanaro, Don Priore,
Vidya Rajagopalan, Sri Samudrala, Sri Santhanam, Scott Kreider,
Stephan Meier, Andy Payne, Homayoon Akhiani, Mike
Kantrowitz, and Dave Conroy, as well as others, who de-
voted tremendous amounts of their time and talents to en-
sure the successful completion of the design. Jim Montanaro,
Mark Coiley, John Faricelli, and John Kowaleski created the
clock analysis and graphical output.

References

1. R.L.Sites, “Alpha AXP Architecture,” Comm. ACM, Vol. 36, No.
2, Feb. 1993, pp. 33-44.

2. Alpha Architecture Reference Manual, R.L. Sites, ed., Digital
Press, Bedford, Mass., 1992.

3. R.Conradetal., “A 50-MIPS (Peak) 32/64-Bit Microprocessor, ”
Digest Tech. Papers, IEEE Solid-State Circuits Conf., Piscataway,
N.J., Feb. 1989, pp. 76-77.

Table 5. MIPS translated code performance on DEC
3000 Model 500 (DEC OSF/1).

Native DECmigrate
SPECint92 84.4 68.6 (81%)
SPECfp92 127.7 81.9 (64%)

4. VAX Architecture Reference Manual, Second Ed., R. Brunner,
ed., Digital Press, Bedford, Mass., 1991.

5. Cray-1 Computer System Reference Manual, Form 2240004,
Cray Research, Inc., 1977.

6. D. Dobberpuhl et al., “A 200-MHz 64-Bit Dual-issue CMOS
Microprocessor,” [EEE J. Solid-State Circuits, Vol. 27, No. 11,
Nov. 1992, pp. 1555-1567.

7. D. Dobberpuhl et al., “A 200-MHz 64-Bit Dual-Issue CMOS
Microprocessor,” Digest Tech. Papers, IEEE Solid-State Circuits
Conf., Feb. 1992, pp. 106-107.

8. DECchip 21064-AA Microprocessor Hardware Reference Manual,
Digital Press, Bedford, Mass., October 1992,

9. R.L Sitesetal., “Binary Translation,” Comm. ACM, Vol. 36, No.
2, Feb. 1993, pp. 69-81.

Edward McLellan is a principal engineer
in Digital’s Semiconductor Engineering
Group. He has contributed to multiple chip
designs, including PDP-11 and VAX float-
ing-point processors, prior to the Alpha
project. He was a coarchitect of the 21064
processor.

i)

McLellan received a BS in computer and systems engineer-

ing from Renssalaer Polytechnic Institute and has done gradu-

ate work at the University of Massachusetts. Currently, he is
working on a third-generation Alpha AXP processor.

Direct any questions concerning this article to the author
at the Digital Equipment Corporation, HLO2-3/J03, Hudson,
MA 01749; mclellan@ad.enet.dec.com.

Reader Interest Survey

Indicate your interest in this department by circling the
appropriate number on the Reader Service Card.

Low 156

Medium 157 High 158

June 1993 47

