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Abstract

In this paper, we focus on the simulation technigues in
order to reduce the space and time requirements for sim-
ulating large caches. First, we propose a space sampling
technique to perform trace reduction for time and space.
Our approach is to perform stratified sampling based on
an index of locality. Our results show that the technique
can provide accurate estimate of performance metric using
only a small portion of trace references. Alternatively we
also propose a time sampling approach, which performs
sampling on loop iterations and requires that references
between inter-loop intervals be fully simulated. We show
that the time sampling technique may give representative
performance results for the entire loop execution. Depend-
ing on different workloads, the approach has been shown to
be very effective in reducing simulation time at the cost of
small estimate errors.

1 Introduction

As processor speed has been increased dramatically over
the last few years, memory latency and bandwidth have
also progressed but at a much slower pace. It is therefore
essential that we investigate techniques to reduce the effects
of the imbalance between processor and memory cycle
times. The introduction of caches between the processor
and memory modules has been shown to be an effective way
to bridge this gap. However, as the gap is increasing and
the cache plays a more important role in the architecture, a
careful cache design choice is therefore crucial to the design
of future computer system. As a result, efficient evaluation
methodology of memory system becomes an essential and
vital step towards a design of high-performance system.
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In general, there are three ways to evaluate the perfor-
mance of a cache memory: hardware monitoring, analytical
modeling, and simulation. The first approach provide the
most accurate results, however it requires expensive hard-
ware and has limited applicability. The second approach[2]
requires most inexpensive calculations, but only gives
roughly estimated results. Simulation, especially driven
by traces[4], has been the most widely used method among
the three ways. It generally works in the following way:
A program of interest (or benchmark) is really executed
and at the same time a history of its memory references
(called trace) is captured. The resulting address trace is then
used to drive a simulation model under study. By varying
the parameters in the simulation model, we can investigate
various choices of a new cache architecture design. The
drawbacks of the trace-driven simulation approach are: (1)
it requires a large storage to record the traces, (2) it takes a
long simulation time, and (3) the impact of varying archi-
tectural choices may not be reflected in the traces. Among
of them, the effect of the third factor is still unknown,
since it is essentially hard to measure counter-effects on the
final results. As cache sizes are growing, these problems
may be getting worse because it would require very large
traces (e.g., billions of references) to obtain steady-state
performance[7].
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Figure 1. Sampling by space and time division



Since trace simulation is generally time-consuming, we
may avoid the long simulation process by using trace-
sampling techniques. The key idea is to observe only a smail
portion of the cache simulation and make the performance
measurement from a collection of these observations (also
called samples). As shown in Figure 1, the sampling
techniques may be applied in either time domain or space
domain, or combined both. By time sampling, the cache
performance is observed only in several time-contignous
trace intervals and the rest portions of the trace stream are
ignored. By space sampling, the performance is observed
for references accessing portion of overall cache sets. Since
the cache is usually relatively small to the main memory,
it is partitioned into many sets and each set contains one
or more data lines[11]. A basic operation of simulating the
cache is to select a set based on the data address and then
to compare the tag with the data reference. Under such an
organization, those references to one set are conceptually
independent of references to the other set.

In this paper, we focus on the simulation techniques
mentioned above, namely simulation by sampling in order
to reduce the space and time requirements for simulating
large caches. The rest of the paper is organized as follows:
the next section gives a review of related work. In Section 3,
we describe a simulation methodology which may provide
efficient technique to deal with huge trace problems for
simulating large caches.

In Section 4, we propose a space sampling technique
(i.e., set sampling). The basic idea is to quantify the locality
and to divide the entire cache sets into ‘‘similar’’ groups.
The sampling is done by a random choice within similar
groups based on a given ratio, that is, by stratified sampling.
The overall reference traces can be significantly reduced
without generating too much error.

Section 5 gives a technique of time sampling. Instead of
randomly cutting trace by fixed time intervals, we perform
sampling based on the loop iterations. The assumption is
that the behavior of loop iterations is basically similar so
that sampling on loop iterations may give representative
performance results for the loop execution. The execution
between loops is fully simulated to preserve the behavior
characters which may have large variations. Fortunately,
these execution parts only share a small portion of the
overall execution stream. Finally, we conclude the paper
and snggests directions for future work in Section 6. -

2 Related Work

The primary resource that the trace-driven simulation
relies on is the set of trace. However, traces are generally
huge, requiring hundreds of megabytes per trace. There are
in general three approaches to minimize the trace storage
size. The first approach abstract execution is proposed by
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J. Larus[14]. In his scheme, the trace contains only a subset
of the addresses with which the use of static analysis can
combine o generate a complete trace. Thus, traces are
stored in terms of abstract records of program execution.

The second approaches trace reduction decreases the size
of traces by cutting partial information. Smith[20] pioneered
this work by proposing a trace deletion scheme for memory
paging studies. To extend Smith’s technique, Puzak[18]
introduced a trace stripping technique that reduces program
traces by preprocessing them using a smaller cache filter.
Wang and Baer[21] extended Puzak’s cache filter to create
a reduced trace that may contain exactly the same number
of cache misses and write-backs as the original trace. In
contrast to Puzak’s cache filter, Agarwal et al.[3] proposed
a block filter to exploit cache spatial locality. The block
filter considers a window of w consecutive references a
time and leaves only a reference to represent spatial locality
contained within the reference window.

The third approach trace compression aims at reducing
the storage size without losing any trace information. The
standard sequential data compression algorithm such as
the Lempel-Ziv scheme[22] may not work well in the
trace compression because the addressing patterns does not
always repeat as expected. Samples[19] presented a trace
compression technique which checks the difference between
a current address and the last address and keeps only those
relatively large differences in the trace.

As to the sampling technique, Laha et al.[13] gave a
sampling study by observing cache behavior in several trace
intervals in a single time-contiguous trace. Since the length
of sampling intervals was heuristically experimented, it is
questionable what a good interval should be derived for
general applications. Kessler et al.[12] compared trace-
sampling techniques for very large caches. Their results
indicate that sampling can be a good way to achieve good
reduction. However, since their observations were based on
large caches, where variations between sets tend to be small,
the results may not be applicable to other organizations. Liu
and Peir[16, 17] examined techniques for sampling of cache
sets based on congruence classes. Their approach requires
traces to be pre-processed and the technique is generally
limited to a single organization. They group up the sets
whose miss rates are similar and assume that the sets in
the same group as have similar behavior. For each group,
they selected a few sets to stand for that group. As
indicated by Heidelberger[10], there is more information
obtained by running a single set for a longer time that
there is in examining a collection of highly correlated
references produced over a shorter period of time. Hence,
the key observation is to avoid simulation on sets with high
correlation.

Another trace sampling had been studied by Fu and
Patel[9]. In their study, model simulation is performed



using sampled intervals which are generated by taking a
number of samples from a complete trace. Unfortunately,
the algorithm to deal with fill prediction problem (cold
start) is based on heuristic inference. Concurrent simulation
of cache sets[10] had been studied in the area of parallel
simulation. To sum up, these sampling techniques still bear
a similar disadvantage that they can only measure cache
misses. More recently Lauterbach[15] proposed a parallel
simulation scheme by distributing the simulation of the
samples across many workstations. He avoided the use of
a large samples by taking the advantage of filling the cache
with the warm-start state.

Laha et al.[13] studied the sampling by taking a number
of sampled intervals. References within an inter-sample
interval are not collected and simulation is performed only
within those selected samples. The primary problems to
use partial intervals to represent the overall metric are that
the cache memory may contain unknown states that would
have been filled by references in the inter-sample interval
(also known as cold-start problem) and that the intervals
are generally selected in a systematic way. Agarwal et
al.[1] suggested that the cache state at the beginning of
an interval can be stitched with the cache state at the end
of the previous interval. However, the approach requires
that references nearly at the end of inter-sample interval be
not skipped. Fu and Patel[9] also performed the study of
sampling in obtaining accurate cache simulation results from
a representative sampled trace. Their efforts are focused
on the determination of initial cache state. Overall, all of
these approaches select the interval in a random manner at
a length of randomly chosen size.

3 Evaluation Methodology
3.1 Trace generation

To generate the traces in this study, we use the QPT
system[6] developed at the U. of Wisconsin. It is a profiling
and program tracing system with rewriting a executable
program file by either inserting code to record the execution
frequency of every basic block or control-flow edge, or
by inserting code to capture every instruction and data
references.

Since the size of trace files are generally very huge (e.g.,
Nasa requires 300MB for the compressed file and Eqntott
requires 200MB space), we employ the on-the-flytechnique,
that is, the output of the trace generator is directly fed to the
simulator without writing traces to a disk. The advantages of
the on-the-fly simulations include the saving of disk storage
and thereduction of data transmission time (especially when
the disk storage is not local to the simmlating environment).
However, the cost is that traces must be regenerated for
each simulation of the architectural model. We alleviate
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the problem by simulating multiple cache configurations for
each trace generation pass so that the cost of regenerating
traces is amortized among several configuration studies.
The other drawback is that the operating system may alter-
natively execute the two processes where context switching
time becomes another extra overhead due to the fact that
the trace producer and the trace consumer (simulator) are
different processes.

3.2 Benchmarks and metric

In this study, we focus on only the simulation tech-
niques. We vary the size and set-associativity of memory
caches over a range of 64K-2M bytes and direct-mapped
to four-way. We do not consider other features or cache
enhancements like prefetching, write strategies.

We perform simulations on SUN SPARC 10 worksta-
tions running the SunOS 4.1.3 system, using standard CC
and Fortran compilers. We use ten programs from the SPEC
benchmark suite.

The performance metric we used is misses per instruction
(MPY) instead of miss ratio. The two main reasons are that
miss ratio may be misleading in estimation by sampling
and that MPI can give the more common measure cycle
per instruction (CPI) by multiplying a factor of cache miss
latency. The original MPI value of the full trace (called
MPI f,,]]) is:

m—1
E miss;
m—1

Z instruction;
=0

MP]ﬁ,]) = (1)

where miss; and instruction; are the miss count and the
instruction of the ith set respectively in a cache with m sets.

4 Space Sampling

When sampling in space domain is concerned, the first
intuition is sef-sampling. Because the simulation space can
be divided into multiple disjoint subspaces, we can simulate
the activity in each of the spaces independently. The set-
sampling we consider is a technique to produce a reduced
trace, which is a fraction of a program trace, typically
containing only a fraction of references in the full trace.
Instead of the huge full trace, we could just use a reduced
trace to drive simulations and to estimate the performance
of a cache memory systems so that the long simulating time
could be saved.

For set sampling, the simplest method is to select sets
randomly from a cache. However, the selection does not
imply any relationship with the behavior of other cache sets.



Hence, the result from random selection may not necessarily
give representative results for the entire cache memory.

Kessler et al.[12] had proposed a constant-bit method
to overcome the disadvantages of random sampling. The
scheme selects all of the references whose set index ad-
dresses contain certain constant bits, for instance, those
have the binary value 0000 in address bits 8-11. The key
observation in the method is to select references rather than
sets. However, the selection rule is very regular, so it may
not reflect the actual behavior of the trace. The problem
occurs when the waorkloads use the address space system-
atically and the trace has a certain degree of regularity
according to the constant bits (e.g., frequent accesses to a
fixed stride vector), we will get a biased estimation.

4.1 Quantify the locality

A program or a process usually tends to use only a
portion of its address space at certain times, which is known
as the principle of locality. In fact, this principle has two
dimensions: temporal locality and spatial locality.

Our basic assumption is that those sets which have similar
degree of locality should have a certain relationship, that
is, are highly correlated. We will define two index values
to quantify the degree of locality. However, the concepts
of temporal and spatial locality are very abstract, so we
generally concern about the term “locality” only. Then,
we divide the sets into several strata, that is, to stratify
the cache sets so that sampling can be done based on each
stratum respectively.

Now we wish to quantify the concept of locality in terms
of concrete values, so that we can estimate the degree of
similarity for cache sets. Given that the smallest access
unit is a block, we consider the locality indices for data
blocks. We use two parameters to quantitatively represent
the locality: distance locality and neighborhood locality.
First, we specify a serial number for each address reference
and define the distance between two references which are
mapped to the same set as the difference of their serial
numbers. Let’s consider the distance between consecutive
references for one data block. Clearly, the longer the
distance, the weaker the locality is. Since the dropping pace
of locality with respect to distance can be approximated
by an exponential function, we use the function e=< to
represent that.

When the distance is equal to one for a block, the block
has been referenced two times in a row. Hence, it has the
highest locality value. When the distance is larger than
a threshold value, the locality becomes very insignificant.
We estimate the degree of locality for one data block by
adding up all locality function values calculated from each
pair of consecutive references for that block. We call the
added-up value as "distance locality”, which is more related
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to temporal locality.

The other measure we used for estimating locality is to
count the references frequencies for each block associated
with its neighbar blocks. By the principle of spatial locality,
a block tends to have a closer relationship with its neighbor
blocks than other blocks in the entire address space. We
assign a counter for each block. The counter of a block will
be incremented whenever either this block itself is accessed
or one of its neighbor blocks is referenced. We call the value
of the counter "neighborhcod locality", which is related to
spatial locality.

We go through the entire trace to calculate the locality
values for each block. Finally, we combine these two values
by multiplication and obtain a single general locality value
with each data block.

4.2 Sampling by stratification

Our goal is to draw a few sets out of the smallest cache
(described in the next section) as a sample for generating
reduced fraces. The reduced trace is a collection of address
references which access the sampled sets. Since many
blocks may be mapped to the same cache set while they
are placed in the smallest cache. We obtain an index value
for each set by computing the sum of general locality of all
blocks assaciated with this set. The basic idea is to stratify
sets by locality index based on the index to perform set
sampling, The assumption is that the sets with similar index
values would have similar properties and can to be assigned
in the same stratum.

From sampling techniques[8], we know that:

If n sampling events are observed from N populations of
X (for example, X is the MPI of cache sets), we let f = .

When a random sampling is applied, the variation of
sampling estimates will be

o2 = ]—\::(1 —foy

where 0% is the variation in population.
When proportionally sampling is performed on stratified
sets, we have

o2 = %ﬂ(l — 0% — > X))

where ¢*(X},) is the variation among stratum means.

As a result, the overall variation of sampling estimates
can be minimized by a proper stratification. The key point
is that we use the locality index to stratify those cache sets
into a number of strata, in each of which the variance of
metric is minimal, whereas the difference in the stratum
means o>(X},) is maximal.

In this study, the similarity is defined as the difference
of index values below 10%. In that manner, the total sets



Table 1. Reduction ratios for different selection ratio

Selection Ratio r,
Trace 1/4 1/8 1/16 1/32 1/64
Eqntott || 27.15% | 15.14% | 9.18% | 615% | 4.69 %
Espresso || 2852% | 16.89% | 11.04% | 850% | 752%
Ratio Fpppp 3086 % | 20.02% | 1484 % | 12.79% | 1221 %
of Matrix || 26.66 % | 1455% | 850% | 537% | 4.00%
set Nasa 2764% | 1582% | 996% | 693% | 547 %
selected Spice 2832% | 16.70% | 1123% | 859% | 723 %
Tomcatv || 26.56 % | 1445% { 840% | 537% | 381%
Xlisp 2783% | 1592% | 1025% | 742% | 596 %
Eqntott || 2952% [ 17.12% | 11.00% | 742% | 6.09%
Espresso || 39.36 % | 3194 % | 27.00 % | 2495% | 24.87 %
Ratio Fpppp 30.75% | 2255% | 1898 % | 17.57% | 17.00 %
of Matrix || 27.42% | 19.15% | 1430% | 11.48% | 9.87%
reduced Nasa 2697% | 1650% | 11.05% | 707% | 529%
trace Spice 3069% | 1971 % | 1459% | 12.24% | 10.75 %
Tomcatv || 29.32% | 1661 % | 893% | 5.06% | 4.55%
Xlisp 2855% | 1704 % | 1159% | 8.78% | 7.99%

of the smallest cache are split into many strata. For each
stratum, we just pick out a few sets (given by a ratio) to
represent all other sets in the stratum, and the sample trace
is obtained by collecting references to the selected sets.

The next task is to pick up sample sets from the entire
cache based on stratification sampling concept. Considering
the a stratum of sets with similar index values, we establish
a selecting ratio r, (r; < 1)and pick the ratio of number of
sets from each stratum. Upon the sampling ratio r; on cache
sets number, a collection of trace from sampled sets does
not necessarily give a fraction of r, of full trace. There are
two level of sampling to be performed. For a stratum that
contains sufficient n number of sets, that is, n > +. Then
we should pick [rn] sets out of this stratum. Other small
stratum as a group are randomly sampled at the same ratio
Ys.

4.3 Conflicting blocks

Since the sampling on the space domain is to provide
a cache filter such that other configurations may also use
the reduced trace to obtain the estimated results with less
simulation cost. As a result, we should take into account the
block conflict problem in selecting sets.

Let’s consider those blocks that may conflict while they
are mapped into the same cache set. The situations may not
be identical in different cache configurations. Two blocks
of data conflict within a 32K cache, they may or may not
collidein an 128K cache. Base on the inclusion property[5],
we can show that two blocks conflict in an 128K cache must
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have a collision in a 32K one if the associativity of these
two cache are identical. Therefore we infer the following
observation based on inclusion property:

QObservation: Given two caches A and B with different
size have the same block size and the same associativity,
the size of A (Agz) is larger than the size of B (Bg). If
there are two data blocks conflicted in the cache A, then
they will always conflict in the cache B.

Suppose these two blocks are placed at set S in cache A,
then in cache B, they would all be located at the same set (S
mod Bgize). At the same time, if two blocks are belonged to
two different sets in cache B, they will be separated in cache
A. Hence, in order to provide a fully independent sets, we
need touse the smallest cache in our cache filtering process,
that is, to choose a minimal configuration in the study to
obtain a filtering cache for set sampling,

4.4 Estimating MPI and errors for a sample

As described in Section 3, we use the MPI as the
performance metric. What we need is to estimate the overall
MPI using set sampling technique. We use a 32K cache
as the smallest cache to simulate full traces. The smallest
cache has m sets (m = 1024 in our experiments), and there
are n sets selected in a set sample 8. The original MPI value
of the full trace is defined as Equation (1).

Then we use the all-instructions method[12] to calculate
the estimated MPI, for sample S as follows:!

missy
i€S instruction;
mean of the miss ratio per set may contribute significant errorsf{18].

“We do not estimate MPJg as 1 , since the arithmetic



Table 2. Coefficients of variance by space sampling

Selection Ratio 7 4] 1R8] 16| 1p2] 1/e4
Trace | Cachesize | MPluy x 1000 Coefficients of variance
128K 4213 132% | 235% | 277% | 316% | 289%
Eqntott 256K 2451 178% | 316% | 428% | 514% | 520%
512K 0.849 298% | 543% | 584% | 606% | 6.76%
1024 K 0.263 577% | 13.86% | 1939% | 2804 % | 35.75%
128K 0.077 1142% | 1324% | 2138% | 3406% | 2693 %
Espresso 256K 0.045 1099% | 1253% | 14.63% | 2532 % | 24.64 %
512K 0.022 129% 212% 362% | 4.65% 574 %
1024 K 0.022 1.15% 1.98 % 314% | 428% 520 %
128K 0.224 604% | 747% | 660% | 760% | 857%
Fpppp | 256K 0.186 318% | 386% | 448% | 486% | 459%
512K 0.174 196 % 317% 5.04 % 6.87 % 6.15%
1024 K 0.173 072 % 126% 221% | 279% 2.89%
128K 1.688 339% | 553% | 536% | 674% | 817%
Matrix 256K 0.141 1.75% 262 % 257% 332% 401 %
512K 0.025 3.70% 536 % 857% | 1021% | 1481 %
1024 K 0.022 033% 0.70 % 137% | 231% 285%
128K 9.744 0.18% 030 % 036% | 039% 0.50 %
Nasa 256K 0.290 712% | 11.13% | 1411% | 13.68% | 19.86 %
512K 0.003 209% | 492% 806% | 12.28% | 1547 %
1024 K 0.002 047% | 098 % 173% | 2.87% | 357%
128K 7.144 154 % 2.76 % 351% | 497% 629 %
Spice 256K 3.203 073 % 136 % 155% | 229% | 243 %
512K 0.679 126% 1.90 % 275% | 4.87% 6.03 %
1024 K 0.351 024 % 041 % 0.64 % 0.87 % 1.08 %
128K 6.044 035% | 052% | 068% | 048% | 085%
Tomcatv 256 K 5.947 0.18% 027 % 0.36% 027 % 048 %
512K 5.790 0.10% 015% 020 % 0.19% 032%
1024 K 4938 0.09 % 0.13% 020 % 027 % 037 %
128K 0.064 300% | 418% 723 % 810% | 1035%
Xlisp 256K 0.001 239% 337 % 573 % 646 % 779 %
512K 0.001 239% 337% 573% 6.46 % 779 %
1024K 0.001 239% | 337% | 573% | 646% | 179%

where |S| = n and there exist m sets in the cache. For each
program trace, we have to take several samples (S, to Sk)
to make multiple estimations. Therefore the coefficients of
variance (CV) for these samples can be computed:

K
%Z (MPIg, — MPIyy*

J=L

ov =

MPLy

where K is the sampling times (number of samples).
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4.5 Results

Table 1 shows the results of stratified sampling on cache
sets from eight traces. In the table, we show respectively
the reduction ratios of number of sets selected and fractions
of the total length of trace with respect to selection ratio
(rs). Consider the column labeled ‘1/4”* in Table 1, which
presents to the stratified sampling using 1/4* of the sets,
that is, 25% of sets. Using stratification on sets, we obtain
trace reduction by roughly 26%-30% because the number of
sets in each stratum may not be equal. When we reduce the
fraction of sets in a stratum (the number of sets per stratum)
from 1/4 to 1/16 and from 1/16 to 1/64, the ratios are
significantly reduced, up to only 3%-10% of ariginal trace.
However, the effectiveness of trace reduction apparently
depends on the characteristics of workloads, where the



stratum sampling does not give effective the reduction for
benchmarks Espresso and Fpppp. Also note that the ratio
of sets selected does not necessarily coincide with the ratio
of traced trace (e.g., Espresso and Spice). The main reason
is that trace references do not equally distributed among
all of sets. This also explains that why random systematic
sampling like constant-bit scheme may not work well for
some workloads.

Table 2 gives the errors between stratum sampling and
MPIy,; for different workloads with varying cache sizes and
selection ratio. The column labeled MPIy,; x 1000 gives the
“‘real”’ value of MPI when a full trace of each workload is
applied. As expected, the MPIy,; decreases as the cache size
increases. The left part of the table shows the coefficient of
variation of the stratum-sampling AP/ estimates. Generally
speaking, most workloads contain relative errors of less than
10%, some even less than 1%. Under the same workload,
the relative error is slightly increased as the selection ratio
becomes smaller, since the ratio of trace selected is smaller.
Increasing the cache size from 64K to 1024K may generally
reduce the coefficients of variance. This is because a cache
with a larger size has less conflict and capacity misses than
a cache with a smaller size so that the locality index can
be reflected in a more accurate manner. However, in some
workloads, the condition may not hold in some particular
sizes. We conjecture that this is due to the fact that those
references mapped to sets are severely biased to certain
particular location. Based on the reduction in Table 1 and
the errors in Table 2, we can find that our stratum sampling
can obtain accurate MPI estimate (with errors less than 10%)
in Eqnott, Matrix, Nasa, Spice, Tomcatv, and Xlisp at a cost
of only a small fraction of trace (less than or equal to 10% of
overall trace). For the rest of workloads, the technique also
gives acceptable error with slightly higher cost (up to 30%
of original traces), although some cache configurations with
severe conflict may give significant errors.

5 Time Sampling

Time sampling is another alternative technique often used
in the experiment with a long execution stream. Instead of
randomly cutting trace by fixed-length intervals, we perform
sampling based on the loop iterations. The assumption is
that the behavior of loop iterations is basically similar so
that sampling on loop iterations may give representative
performance results for the loop execution. The execution
between loops is fully simulated to preserve the behavior
characters which may have large variations. Fortunately,
these execution parts only share a small portion of the
overall execution stream. The results indicate that our time
sampling technique can skip a large portion of traces (up to
95%) but still obtain accurate performance metric. The bias
effect due to unknown cache state is small in the inter-loop
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intervals.
5.1 Time sampling by loop

Since the primary goal of time sampling is to collect
a representative collection of sampled intervals, sampling
on a fixed length interval in a random way may not be
representative as expected. Figure 2 shows the MPI versus
AMPI with respect to sampled intervals in a length of one
million instructions per interval. We can see that the values
of MPI per interval are widely different and randomly
distributed. As a result, not only results collected from
partial trace may be misleading, but a wide variance in MPI
per intervals may not give a representative result.
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Figure 2. MPI per 1M instructions for Matrix

Instead, we observe the same metric in terms of loop
iteration per interval as shown in Figure 3, where intervals
between different loops may have different length. The
metric MPI of each iteration becomes more stable on a
per-loop basis. Hence, the observation of the regularity of
loop execution leads to our motivation of time sampling on
loop iterations.
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Figure 3. MPI of every iteration for Matrix

The basic idea of our sampling approach is to identify
the loop execution starting point and ending point. When



the simulation finds a starting point of a loop, the simulator
keeps track of data in each loop iteration. Once the instanta-
neous performance metric from one iteration is not too much
different from previous iterations, we may conjecture that
the following iterations have similar performance behaviar.
Hence, we may skip the rest of execution in the loop and
then estimate the performance metric of the loop based on
the observed data. Even though we perform sampling in
the loop, the simulation after one loop will be restarted at
the end of loop execution, that is, all of execution streams
between loops are fully simulated.

Our assumption is that the simulator is able to identify
the starting point and ending point. To achieve that, we
need to instrument the benchmark programs so that special
hints will be passed to the simulator when the necessary
loop points are reached. One way to do that is to rewrite
the binary code of the benchmark programs[6]. The loop
execution can be identified by a backward branch edge
in the control flow graph. Since we currently use SPEC
benchmarks, where source codes are available to us, our
approach is to insert additional instrumentation assembler
language code in the beginning and the end of the loop for
the purpose of generating special marker events in the trace.

enable_loop

start_|
— start_loop
inner loop — outer loop

—— end_loop
end:]

— " start_loop

—— end_loop

Figure 4. lterations of nested loops

When the modified code is executed and the loop marker
events occur, the simulator would be able to identify a
portion of instruction stream as a single iteration and repeat
the iterations until the end of loop execution. The new trace
stream is observed by the simulator as shown in Figure 4. In
this manner, the performance mefric of a sample is collected
based on the execution stream between the beginning and
ending markers.
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5.2 Sampling criteria

As the execution of one iteration is identified, now the
question becomes the determination of the continuation and
skip of iterations in the loop. Our assumption is that when
the performance metric of loop iterations is getting stable
or periodic, then the rest of execution can be inferred from
the previous sections. First we define AMPI;. as the average
of MPI in the loop after k iterations:

total misses # up to k iterations in a loop

AMPI, = . - —
*~ fotal instructions # up to k iterations in a loop

We require that each loop must execute at least 5 iter-
ations before the loop sampling. The reason is to avoid
the start-up effect and to obtain reasonable representative
data for the sampling. After that, when the difference of
AMPI between two adjacent iterations is sufficient small
to a predefined rate, we can expect that the AMPI of each
iteration afterwards can be estimated to the approximate
value. As a result, after at least 5 iterations, the simulator
detects the condition:

|AMPI,_, — AMPL,|
AMPI,_,

< 5%

If the condition holds at the n'* iteration, we can estimate
the metric of the entire loop using the stable AMPI. Hence,
the total number of misses for the loop would be:

n N n
Total misses of loop = ZM,» + (}:1,- - Z I) « AMPI,
=1

=1 =1

where N is the number iterations in the loop. In the above
equation, the first term is known after the first n iterations
by simulation and the next term is to estimate the miss
count. After that, we resume the simulation so that the
metric between inter-samples can be collected. Hence,

AMPLyran = Y AMPIsWeight+ > AMPI«Weight

1€loop; kginter_loop;

where Weight; is proportional to the instruction count of
each sample. Finally, we give the bias of MP/ estimate by

AMP]overaII - AMPIfuI)
AMPIsy

where AMPIp,; is the average MPI obtained from a full
trace.

Although we skip from n™ iterations on, the fraction of
reduced trace can be very small since the value § is usually
small such that most simulation time can be saved. The other
advantage of our sampling over traditional time sampling
is that the long loop execution may mitigate cold-start bias
because programs usually have different working sets for
different loop execution.

Bias‘, =



5.3 Results of Time Sampling

Table 3 gives the results of time-sampling by loop
iterations for benchmarks Nasa, Tomcatv, Matrix, and
Fpppp. Particularly for Fpppp, we perform three different
levels of loop sampling because the entire program consists
of several loops at different levels. In Fpppp(1), we insert the
loop markers with respect to the most outer loop so that each
iteration may contain even up to millions of instructions.
Fpppp(2) gives the sampling for the most fine-grained loop
iterations, where the similarity among iterations is the most
apparent. In the left part of Table 3, the columns below
labeled ‘‘data reference count’’ give the fraction ratio of
the overall trace which has been really simulated. In most
cases, time-sampling by loop iterations skip a large portion
of traces (only 2% to 7.4% of data references is actually
used).

Table 3. Results of time sampling by loop

Data reference count
Original | Sampling ratio
nasa 5678M 422M 7.44 %
tomcatv 2278 M 58 M 235%
matrix 308 M 14M 4.68 %
fpppp(1) 1743 M 715M | 41.03%
fpppp(2) 1743M | 1409M | 80.77 %

MPI

Original | Sampling Bias;
nasa 0.014328 | 0.014330 | 0.0115 %
tomcatv || 0.013254 | 0.013076 1.35%
matrix || 0.013685 | 0.013681 | 0.029 %
fpppp(1) || 0.000852 | 0.000948 | 11.25%
fpppp(2) || 0.000800 | 0.000859 0.77 %

The right part of Table 3 shows the MPI estimates and
error. We can see the bias of the performance metric
is relatively small for programs Nasa, Tomcatv, Matrix,
and Fpppp(2). In these programs, the regularity is very
significant so that the overall MPI can be easily calculated
even with a very small fraction of the trace. It indicates
that for programs with intensive loop computations to spend
much simulation time in obtaining a single result is not
necessary. However, if we apply time-sampling at intervals
of fixed length, we may not acquire sufficient representative
samples. For Fpppp(1), the MP! estimate gives slightlylarge
errors to thereal MPI. Qur observation on the program is that
the first few iterations in the medium loops have momentous
oscillation curve that the simulator tends to over-estimate
the MPI.
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5.4 Effect of unknown cache state

Similar to the time-sampling technique, the loop sam-
pling approach must estimate the initial effect for those
intervals without knowledge of initial cache state. Although
this is also known as cold-start problem, the problem has
a different situation in our technique. Note that the cache
state usually reflects the state of current working-set of the
execution. The key observation is that the unknown cache
state in our approach is in inter-loop intervals (where the
working set has been largely changed), whereas in other
time-sampling the cache state is completely unknown to its
following references. As a result, we may expect the effect
of cold-start problem is very minor in our approach.

Table 4. Cold start misses of loop sampling

#of unknown | cold start | ratio
inter-loop refer miss
nasa 5 122 0 0.0
tomcatv 500 37893 23900 | 63.%
matrix 8 227 0 0.0
fpppp(1) 1 106 0 0.0
fpppp(2) 617 500 86 17. %

To see the effect of cold-start cache, we gather the
number of references in inter-loops which are mapped to
a cache set in a unknown state. We also compare the
same reference to a full frace simulation to check whether
the reference contributes a real miss in the full simulation.
Table 4 shows results of cold-start effect. The column
labeled “‘# of inter-loop’’ indicates the number of inter-
loop intervals in the simulation. Only references in the
inter-loop interval will introduce cold-start problems. In
general, the count of the inter-loop intervals is very few
and the corresponding number of references is even small.
The column labeled “‘cold-start miss’’ shows that the real
misses due to unknown cache state are very rare, with
only 0% up to 17%, except Tomcatv. In the program, the
number of unknown references is relatively large, resulting
in significant misses in inter-loop intervals. However, this
bias due to the unknown cache state is still relative small,
when compared to the overall data references (as shown in
Table 3).

6 Conclusion

In this paper, we focus on the development of effec-
tive simulation techniques, namely simulation by sampling
in order to reduce the space and time requirements for
simulating large caches. We have proposed two new sam-



pling techniques to attack the time and space problems in
trace-driven simulation,

We propose a space sampling technique (i.e., set sam-
pling). The basic idea is to quantify the locality and to divide
the entire cache sets into ‘‘similar’’ groups (called strata).
The sampling is done by a random choice within similar
groups based on a given ratio, that is, by stratified sampling.
The overall reference traces can be significantly reduced
without generating too much error. After that, we give
a new time-sampling technique which performs sampling
based on the loop iterations. The basic assumption is that
the behavior of loop iterations is similar so that sampling on
loop iterations may give representative performance metrics
for the loop execution.
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