Computer Networks - Xarxes de Computadors

Outline

- Course Syllabus
- Unit 1: Introduction
- Unit 2. IP Networks
- Unit 3. TCP
- Unit 4. LANs
- Unit 5. Network applications
Unit 5. Network applications

Outline

-Charsets
-DNS
-Email
-Web
-HTML & XML
Languages, cultures, alphabets

7400 million people (2016)

22% speak Chinese, 11% English, 7% Spanish, 0.1% Catalan

Apart from languages, there are cultures and alphabets

- Language with several cultures: es_ES, es_CO ("locale")
- Alphabet shared by several languages (e.g. català & français)

Culture:

- Messages, character sets, transliteration, ordering, search in strings, hours and dates, numbers and currency, pronunciation, …

Interaction between agents in different languages and cultures: alphabets and character sets
Languages, cultures, alphabets

Internacionalization (i18n), Localization (l10n)

Alphabets

- "base": ascii
- National: e.g.: latin-1 (includes ascii), kanji
- International: e.g.: unicode (includes latin-1 and “all” languages)

Expression or language negotiation (in HTTP):

- **Accept-Language**: es, ca, en-gb, en
- **Accept-Charset**: iso-8859-15, unicode-9-0
 ...

English is the default ...

- **Content-Language**: ca
- **Content-Type**: text/html; charset=utf-8
 ...

Character sets

Characters are encoded following several conventions:

- **repertoire**: a set of characters (name and representation (glyph))
- **code**: correspondence between repertoire and natural numbers.
- **encoding**: method (algorithm) to convert code numbers into a sequence of octets (> 256 characters)
- **US-ASCII**: 95 characters + control=128: 7 bits (1 octet sent)

<table>
<thead>
<tr>
<th>Character</th>
<th>ASCII Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NULL</td>
<td>0</td>
</tr>
<tr>
<td>DEL</td>
<td>1</td>
</tr>
<tr>
<td>SOH</td>
<td>2</td>
</tr>
<tr>
<td>STX</td>
<td>4</td>
</tr>
<tr>
<td>ETX</td>
<td>6</td>
</tr>
<tr>
<td>ACK</td>
<td>10</td>
</tr>
<tr>
<td>BEL</td>
<td>11</td>
</tr>
<tr>
<td>BS</td>
<td>8</td>
</tr>
<tr>
<td>CAN</td>
<td>9</td>
</tr>
</tbody>
</table>

... (chart continues for other characters)
ISO 8859

- ISO 8859-1 (ISO Latin 1): 190 + control = 256: 1 octet
 Western European, default for HTTP

- More variants
 ISO 8859-15 extends -1 + Ý, €
 ISO 8859-2 (Central European)
 ISO 8859-4 (North European)
 ISO 8859-5 (Cyrillic)
 ISO 8859-6 (Arabic) — Most common Arabic glyphs
 ISO 8859-7 (Greek)
 ISO 8859-8 (Hebrew) — modern Hebrew.
 ISO 8859-9 (Turkish, Kurdish)
 ISO 8859-11 (Thai) — Contains most glyphs needed
Universal Coded Character Set

Unicode

All characters from all written languages + math + emoticons +
+=Universal Character set (ucs)

Encoding: UCS-4 bytes (fixed length)

Proportional spacing, language independent

Unicode consortium: synchronized with ISO,

- Unicode 9.0.0 (7/2016): 128,172 symbols
- U+hex code: U+0020 = ' '

Character Encodings: Universal Transformation Format (UTF)

- Difficulty or impossibility to transport 8 or 16 bits data in Internet protocols:
 - UTF-7, **UTF-8**, UTF-16, UTF-32 (variable length)

http://www.unicode.org
Variable length encodings

- UTF-8 (8 bits) (rfc2044)

 Content-Type: text/plain; charset=UTF-8
 Content-Transfer-Encoding: 8bit
 Català, Français, T Åœ m on testi.

- UTF-7 (7 bits) (for smtp …)

 Content-Type: text/plain; charset=UTF-7
 Content-Transfer-Encoding: 7bit
 Catal+-AOA-, Fran+-AOc-ais, T+-AOQ-m+-AOQ- on testi.
Unit 5. Network applications

Outline

- Charsets
- DNS
- Email
- Web
- HTML & XML
Unit 2: IP Networks

Domain Name System DNS (RFC 1034, 1035)

- Allows users to use names instead of IP addresses: e.g. rogent.ac.upc.edu instead of 147.83.31.7, www.upc.edu instead of 147.83.194.21, etc.
- Names consists of a node-name and a domain-name: rogent.ac.upc.edu, www.upc.edu
- DNS consists of a worldwide distributed data base.
- DNS data base entries are referred to as Resource Records (RR).
- The information associated with a name is composed of 1 or more RRs.
- Names are case insensitive (e.g. www.upc.edu and WWW.UPC.EDU are equivalent).
Unit 2: IP Networks

DNS – Domain Hierarchy

- DNS data base is organized in a tree:

```
unnamed root

Top Level Domains (TLD) ->
  edu  com  net  ...  es  fr  ...  arpa  ...

Second Level Domains ->
  upc  ...  ...  ...  ...  ...  ...  ...  in-arpa ...

Generic Domains
  rogent

Country Domains

Infrastructure Domains

Allow reverse resolution
```

Llorenç Cerdà-Alabern, Leandro Navarro i Jaime Delgado
DNS – Domain Hierarchy

The Internet Corporation for Assigned Names and Numbers (ICANN) is responsible for managing and coordinating the DNS.

ICANN delegates Top Level Domains (TLD) administration to registrars: http://www.internic.net

Domains delegate the administration of subdomains.

InterNIC—Public Information Regarding Internet Domain Name Registration Services

Do you have a complaint or dispute?

Your Registrar or Domain Name:

- Domain Name Transfer Dispute
- Unsolicited Renewal or Transfer Solicitation
- Your Registrar is Not on the Accredited List
- Unauthorized Transfer of Your Domain Name
- Trademark Infringement
- Registrar Services Dispute
 - Failure to answer phones or respond to email messages
 - Financial Transaction Issues
- Uniform Domain Name Dispute Resolution (UDRP) Intake Report System

Information about Registrars:

- Search Accredited Registrar Directory
 - Alphabetical List
 - List by Location
 - List by Language Supported
- Have a Problem with a Registrar?
 - Complaint Form
 - HelpfulHints

Information about Whois:

- Search Whois
- Report Inaccurate Whois Listing
Unit 2: IP Networks

DNS – Data Base Organization

- Access to DNS data base is done using *Name Servers (NS)*.
- NSs may hold permanent and *cached RRs*. Cached RRs are removed after a timeout.
- Each subdomain has an *authority* which consists of a primary and backup NSs.
- In this context, subdomains are referred to as *zones*, and delegated subdomains *subzones*.
- An authority has the complete *information of a zone*:
 - Names and addresses of all nodes within the zone.
 - Names and addresses of all subzone authorities.
Unit 2: IP Networks

DNS – Data Base Organization

- **Root Servers** are the entry point to the domain hierarchy.
- Root Servers are distributed around the world and have the TLD addresses: http://www.root-servers.org
- Root server addresses are needed in a NS configuration.

Source: http://www.root-servers.org
Unit 2: IP Networks

DNS - Unix example: The resolver

- The applications use the calls *(resolver library)*:

  ```c
  struct hostent *gethostbyname(const char *name) ;
  struct hostent *gethostbyaddr(const void *addr, int len, int type);
  ```

- The resolver first looks the */etc/hosts* file:

  ```
  # hosts         This file describes a number of hostname-to-address
  # mappings for the TCP/IP subsystem. It is mostly
  # used at boot time, when no name servers are running.
  # On small systems, this file can be used instead of a
  # "named" name server.
  
  # Syntax:
  # IP-Address  Full-Qualified-Hostname  Short-Hostname
  127.0.0.1     localhost
  10.0.1.1      massanella.ac.upc.edu massanella
  ```

- Otherwise a *name server* is contacted using */etc/resolv.conf* file:

  ```
  search ac.upc.edu
  nameserver 147.83.32.3
  nameserver 147.83.33.4
  ```
Unit 2: IP Networks

DNS - Protocol

- Client-server paradigm
- UDP/TCP. **Short messages uses UDP.**
- well-known port: 53

```
1 18:36:00.322370 IP (proto: UDP) 147.83.34.125.1333 >
   147.83.32.3.53: 53040+ A? www.foo.org. (31)

2 18:36:00.323080 IP (proto: UDP) 147.83.32.3.53 > 147.83.34.125.1333:
   53040 1/2/2 www.foo.org. A 198.133.219.10 (115)
```
Unit 2: IP Networks

DNS – Unix example: Basic NS configuration

- Unix NS implementation is BIND (Berkeley Internet Name Domain), http://www.isc.org.
- named is the BIND NS daemon.
- BIND basic configuration files:
 - /etc/named.conf global configuration
 - /var/lib/named/root.hint root servers addresses
 - /var/lib/named/*.db zone files
Unit 2: IP Networks

DNS – Unix example: zone file

```
linux # cat /var/lib/named/foo.db
; BIND data file for foo.org
; /var/lib/named/foo.db

foo.org. IN SOA dns.foo.org. root.foo.org. (1998121401 ; Serial
604800 ; Refresh
86400 ; Retry
2419200 ; Expire
604800 ) ; Default TTL

IN NS dns.foo.org.

IN MX 10 mail.foo.org.

www IN A 198.133.219.10
ftp IN CNAME server
news IN A 198.133.219.20
mail IN A 198.133.219.30
dns IN A 198.133.219.40
dns2 IN A 198.133.219.50
...
sub.foo.org. IN NS dns3.sub.foo.org.
dns3 IN A 10.10.0.24
...
```

- **Resource Records (RR):**
 - The domain name
 - The domain NS
 - The domain maintainer mail address (the @ is written as a '.')
 - MX preference value (used if multiple servers are available)
 - NS name domain mail server
 - IP addresses and alias names
 - name (type A or CNAME), domain (type NS of MX).
 - If the domain is missing, it is automatically added.
 - type:
 - SOA: Start Of Authority.
 - NS: NS name.
 - MX: the domain mail exchange.
 - A: A host address.
 - CNAME: Canonical Name Record. E.g. the real hostname of www.foo.org is server.foo.org.
 - class:
 - IN: Internet System.
Unit 2: IP Networks

DNS – Unix example: root servers addresses

```bash
linux # cat /var/lib/named/root.hint

; This file holds the information on root name servers needed to
; initialize cache of Internet domain name servers
; (e.g. reference this file in the "cache . <file>"
; configuration file of BIND domain name servers).
;
; This file is made available by InterNIC
; under anonymous FTP as
;   file /domain/named.root
;   on server FTP.INTERNIC.NET
;   -OR- RS.INTERNIC.NET
.
A.ROOT-SERVERS.NET. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 IN A 198.41.0.4
.
B.ROOT-SERVERS.NET. 3600000 IN NS B.ROOT-SERVERS.NET.
B.ROOT-SERVERS.NET. 3600000 IN A 192.228.79.201
.
C.ROOT-SERVERS.NET. 3600000 IN NS C.ROOT-SERVERS.NET.
C.ROOT-SERVERS.NET. 3600000 IN A 192.33.4.12
.
M.ROOT-SERVERS.NET. 3600000 IN NS M.ROOT-SERVERS.NET.
M.ROOT-SERVERS.NET. 3600000 IN A 202.12.27.33
...
```

Resource Records (RR) pointing to root-servers

address of a name
NS name
Unit 2: IP Networks

DNS – Resolution

- NSs cache name resolutions.
- A cached RR is returned without looking for in the NS authority.
- The same name may be associated with several IP addresses (e.g. load balancing).
- The addresses of a common domain may not belong to the same IP network (e.g. Content Distribution Networks).
Unit 2: IP Networks

DNS – Load balancing, example

Example using dig:

```bash
linux ~> dig www.microsoft.com
;
;; DiG 9.3.2 <<>> www.microsoft.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 31808
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
www.microsoft.com. IN A

;; ANSWER SECTION:
toggle.www.ms.akadns.net. 181 IN CNAME g.www.ms.akadns.net.
g.www.ms.akadns.net. 181 IN CNAME lbl.www.ms.akadns.net.
lbl.www.ms.akadns.net. 181 IN A 207.46.19.60
lbl.www.ms.akadns.net. 181 IN A 207.46.18.30
lbl.www.ms.akadns.net. 181 IN A 207.46.19.30
lbl.www.ms.akadns.net. 181 IN A 207.46.198.30
lbl.www.ms.akadns.net. 181 IN A 207.46.20.60

;; Query time: 42 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; MSG SIZE rcvd: 203
```

```bash
linux ~> dig www.microsoft.com
;
;; DiG 9.3.2 <<>> www.microsoft.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 17923
;; flags: qr rd ra; QUERY: 1, ANSWER: 9, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
www.microsoft.com. IN A

;; ANSWER SECTION:
toggle.www.ms.akadns.net. 215 IN CNAME g.www.ms.akadns.net.
g.www.ms.akadns.net. 215 IN CNAME lbl.www.ms.akadns.net.
lbl.www.ms.akadns.net. 215 IN A 207.46.198.30
lbl.www.ms.akadns.net. 215 IN A 207.46.199.30
lbl.www.ms.akadns.net. 215 IN A 207.46.18.30
lbl.www.ms.akadns.net. 215 IN A 207.46.19.60
lbl.www.ms.akadns.net. 215 IN A 207.46.198.60
lbl.www.ms.akadns.net. 215 IN A 207.46.20.60

;; Query time: 43 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; MSG SIZE rcvd: 203
```
DNS - Content Distribution Networks, example

1. www.foo.org
4. A 80.32.40.20
6. download from a close server
Unit 2: IP Networks

DNS – Messages: Message Format

- All DNS messages have the same **format**:
 - **Header**: type of message.
 - **Question**: What is to be resolved.
 - **Answer**: Answer to question.
 - **Authority**: Domain authority names.
 - **Additional**: Typically, the authority name's addresses.

```
<table>
<thead>
<tr>
<th>Header (12 bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question (variable)</td>
</tr>
<tr>
<td>Answer (variable)</td>
</tr>
<tr>
<td>Authority (variable)</td>
</tr>
<tr>
<td>Additional (variable)</td>
</tr>
</tbody>
</table>
```
Unit 2: IP Networks

DNS – Messages: Header

- **Identification**: 16 random bits used to match query/response
- **Flags**: Some of them:
 - Query-Response, **QR**: 0 for query, 1 for response.
 - Authoritative Answer, **AA**: When set, indicates an authoritative answer.
 - Recursion Desired, **RD**: When set, indicates that recursion is desired.
- The other fields indicate the **number** of Questions, Answer, Authority and Additional fields of the message.
Unit 2: IP Networks

DNS – Messages: Question

- **QName**: Indicates the name to be resolved.
- **QType**: Indicates the question type:
 - Address, **A**.
 - Name Server, **NS**.
 - Pointer, **PTR**: For an inverse resolution.
 - Mail Exchange, **MX**: Domain Mail Server address.
- **Qclass**: For Internet addresses is 1.

```
+----------------+-----------------+-----------------+
|       QName     |       QType     |
| (variable)     |                  |
+----------------+-----------------+-----------------+
|                  |                  |
+----------------+-----------------+-----------------+
```

Codification example of **rogent.ac.upc.edu**
Unit 2: IP Networks

DNS – Messages: Resource Records (RRs)

- The fields Answer, Authority and Additional are composed of **RRs**:
 - **Name, Type, Class**: The same as in the Question field.
 - **TTL** (Time To Live): Number of seconds the RR can be cached.
 - **RDLenth**: RR size in bytes.
 - **Rdata**: E.g. An IP address if the Type is 'A', or a name if the Type is 'NS', 'MX' or 'CNAME'.

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 bits
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                               Name (variable)                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Type                 |       Class                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             TTL                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|         RDLenth               |      RData (variable)         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```
tcpdump -s1500 -vvvni eth0 port 53

tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 200 bytes

11:17:30.769328 IP (UDP, length: 55) 147.83.30.137.1042 > 147.83.30.70.53: 36388+ A? ns.uu.net. (27)
11:17:30.771324 IP (UDP, length: 145) 147.83.30.70.53 > 147.83.30.137.1042: 36388

q: A? ns.uu.net. 1/2/2
ns: ns.uu.net. NS auth00.ns.uu.net., ns.uu.net. NS auth60.ns.uu.net.
ar: auth00.ns.uu.net. A 198.6.1.65, auth60.ns.uu.net. A 198.6.1.181 (117)

Query message:

- 36388: Identifier.
- +: Recursion-Desired is set.
- A?: Qtype = A.
- ns.uu.net.: Name to resolve.

Response message:

- 36388: Identifier.
- q: A? ns.uu.net.: Repeat the Question field.
- 1/2/2: 1 Answers, 2 Authorities, 2 Additional follows.
- ns.uu.net. A 137.39.1.3: The answer (RR of type A, address: 137.39.1.3).
- ns: ns.uu.net. NS auth00.ns.uu.net., ns.uu.net. NS auth60.ns.uu.net.: 2 Authorities (RRs of type NS: the domain ns.uu.net. authorities are auth00.ns.uu.net. and auth60.ns.uu.net).
- ar: auth00.ns.uu.net. A 198.6.1.65, auth60.ns.uu.net. A 198.6.1.181: 2 Additional (RRs of type A: authorities IP addresses).
Unit 5. Network applications

Outline

- DNS
- Email
- Web
- HTML & XML
Unit 5. Network applications

Email

- **Electronic mail (email)**: One of the first applications used in the Internet to electronic messaging.
- **Components**:
 - Transport layer: TCP, well-known port: 25.
 - **Application layer protocol**: Simple Mail Transfer Protocol (SMTP). First defined by RFC-821 and last updated by RFC-5321.
 - Retrieval protocols (IMAP, POP, HTTP).
Unit 5. Network applications

Email - Architecture

- **MUA**: Mail User Agent
- **MTA**: Mail Transfer Agent
- **SMTP**: Simple Mail Transfer Protocol

Asymmetric protocol

System protocol

Access protocol

Retrieval
Unit 5. Network applications

Email - Protocols

- "Retrieval" protocols (mailbox access):
 - POP3 (Post Office Protocol)
 - IMAP (Internet Message Access Protocol)
 - SMTP: Simple Mail Transfer Protocol
Unit 5. Network applications

Email - SMTP processing model

- User \(\text{domain name} \)
- Mail server
- DNS request \(\text{(Mail eXchange, MX record)} \)
- DNS reply \(\text{(MX record)} \)
- User mailboxes
- Outgoing message queue
- Retrieval
- Mail server
- Postfix

- llorenc@ac.upc.edu
- User name
- domain name

- client
- SMTP
- client
- mail user agent, MUA (Thunderbird, outlook, ...)
- mail transfer agent, MTA (sendmail, postfix, ...)

- User mailboxes
- Outgoing message queue
- Retrieval
- mail user agent, MUA (Thunderbird, outlook, ...)

- POSTFIX
 - Postfix logo
 - http://www.postfix.org
 - (UNIX, free and open-source)
Unit 5. Network applications

Email - SMTP protocol (RFC-821, last update RFC-5321)

- Designed as a simple (few commands) and text-based protocol (ASCII).
 - **Client basic commands:** HELO (identify SMTP client), MAIL FROM: (identify sender mailbox), RCPT TO: (identify recipient mailbox), DATA (mail message), QUIT (close transaction).
 - **Server replies:** Three digit number (identify what state the client to enter next), and a human understandable message.

Example: Manually send an email using telnet to port 25.

```
CLIENT       SERVER

linux ~> telnet relay.upc.edu 25  
Trying 147.83.2.12... 
Connected to relay.upc.edu. 
Escape character is '^]'.

HELO linux.ac.upc.edu
250 dash.upc.es Hello linux.ac.upc.edu [147.83.34.125], pleased to meet you
MAIL FROM: <llorenc@ac.upc.edu>
250 2.1.0 <llorenc@ac.upc.edu>... Sender ok
RCPT TO:  <albert@ac.upc.edu>
250 2.1.5 <albert@ac.upc.edu>... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

Hello world
.
250 2.0.0 p14DvFOQ008320 Message accepted for delivery
QUIT
221 2.0.0 dash.upc.es closing connection
Connection closed by foreign host.

```

```
```
Multipurpose Internet Mail Extensions: MIME

- Used in mail, web, etc
- Specification for “Transport” of composite multimedia objects
 - Transport type information (receiver can automatically present)
 - Encoding to enable/facilitate the transfer
- The internal format becomes invisible to users
- Include one or more objects, text in diverse alphabets, large objects (fragments, refs), alternatives, etc.
MIME: examples

From: Nathaniel Borenstein <nsb@thumper.bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: Plain old email

This is a plain old email message.
It contains ASCII text, nothing more.

From: Nathaniel Borenstein <nsb@thumper.bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: Plain text mail
Content-type: text/plain; charset=us-ascii

This is plain text mail.

Subject: French mail
Content-type: text/plain; charset=iso-8859-1
Content-transfer-encoding: quoted-printable

Le courrier =E9lectronique =E0 la fran=E7aise ...

Subject: image/gif
Content-Transfer-Encoding: base64

R0lGODdhSgGgAfUAAENDQ01NTTw8PEVF...
MIME: example multipart

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: A multipart example
Content-Type: multipart/mixed; boundary=CUT_HERE

--CUT_HERE
Content-type: text/plain

Hey, Ned, look at this neat picture:

--CUT_HERE
Content-type: image/gif
Content-Transfer-Encoding: base64

5WVlZ6enqqqqqr....

--CUT_HERE
Content-type: text/plain

Wasn’t that neat?
--CUT_HERE--
MIME: content type

- **Text:** ...
- **Attribute:** charset=iso-8859-1
text/plain (simple text), text/html ...
- **Image:** image/gif, image/jpeg, image/png ...
- **Audio:** sound, voice, music ...
- **Application:** application specific content
 - Application/octet-stream: data without any associated application
 - Application/organization-product
- **Multipart:** a set of objects
 - **Mixed:** a combination of several objects
 - **Alternative:** an object in several formats to select one (text/html/rtf)
 - **Parallel:** several objs for simultaneous presentation (e.g. audio+video)
 - **Digest:** collection of messages
 - **Related:** set of objects part of a single object (web page)
- **Message:**
 - **RFC822:** a complete message (e.g. resent message)
 - **Partial:** a fragment ...
 - **External-Body:** a reference to an external object
MIME: transfer encoding

Ways to encode content: (to “get through” a 7 bit transport)

- Quoted-Printable:
 - The majority of text is 7 bits, transform some characters € → =E4
 - The result “almost” legible without decoding. Depends on table (charset)

- Base64:
 - 3 bytes (24 bits) <=> 4 ASCII (32 bits)
 - A-Za-z0-9+/=
 - ‘=’ as padding, other are ignored (\r, \n, …)

- Binary: No encoding: any character and lines of any length

- 7Bit: No character encoding (all 7 bits) and lines of appropriate length

- 8Bit: No character encoding (8 bits) and lines of appropriate length

In the heading:

MIME-Version: 1.0
Subject: =?iso-8859-1?Q?acentuaci=F3n=20t=EDpica?=
Unit 5. Network applications

Email - retrieval protocols

- Post Office Protocol (POP), RFC-1939:
 - POP server listens on well-known port 110
 - User normally deletes messages upon retrieval.

- Internet Message Access Protocol (IMAP) RFC-3501:
 - IMAP server listens on well-known port 143
 - Messages remain on the server until the user explicitly deletes them.
 - Provide commands to create folders, move messages, download only parts of the messages (e.g. only the headers)

- Web based Email (HTTP)
 - A web server handles users mailboxes. User agent is a web browser, thus, using HTTP to send and retrieve email messages.
Unit 5. Network applications

Email - Webmail

- Web front-end for mail services. The MUA is a web browser.
- Real protocol to access the services: HTTP (web).
- The HTTP server machine uses SMTP or POP3, as required.
Unit 5. Network applications

Outline

- DNS
- Email
- Web
- HTML & XML
Unit 5. Network applications

Web – links

- **Uniform Resource Identifier (URI) RFC3986**
 - Generic syntax to identify a resource.
- **Uniform Resource Locator (URL) RFC1738**
 - Subset of URIs identifying the locating a resource in the Internet.
- **The URL general syntax is**
  ```scheme://username:password@domain:port/path?query_string#fragment_id```
  - **scheme**: Purpose, and the syntax of the remaining part. http, gopher, file, ftp...
  - **domain** name or IP address gives the destination location. The port is optional.
  - **query_string**: contains data to be passed to the server.
  - **fragment_id**: specifies a position in the html page.
- **Examples:**
  - http://147.83.2.135
  - http://studies.ac.upc.edu/FIB/grau/XC/#Practs
  - file:///home/llorenc/gestio/2010/cd/autors.html
Unit 5. Network applications

Web – HTTP Messages, RFC2616

- **Client (HTTP request):**
  - method: GET, POST, ...
  - object
  - version
  - request line
    - GET /index.html HTTP/1.1
  - header lines
    - Host: www.example.com
  - blank line
  - body
    - (data in a POST method)

- **Methods:**
  - **GET:** Typical command. Requests an object.
  - **POST:** Request an object qualified by the data in the body. This data is the contents of the HTML form fields, provided by the client.
  - ...

- **Header:** Allows the client to give additional information about the request and the client itself.
Unit 5. Network applications

Web – HTTP Messages, RFC2616

- POST uses MIME types: application/octet-stream, to send raw binary data, and application/x-www-form-urlencoded, to send name-value pairs. Example:

```
request line
 POST /login.jsp HTTP/1.1
 Host: www.mysite.com
 User-Agent: Mozilla/4.0
 Content-Length: 27
 Content-Type: application/x-www-form-urlencoded

header lines

blank line

body
 userid=llorenç&password=mypassword
```
Unit 5. Network applications

Web – HTTP Messages, RFC2616

- Server (HTTP response):
  - status line
  - header lines
  - blank line
  - body

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
Etag: "3f80f-1b6-3e1cb03b"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html; charset=UTF-8

data ....
Unit 5. Network applications

Web – Persistent/non Persistent connections

- **Non persistent** (default in HTTP/1.0): The server close the TCP connection after every object. E.g., for an html page with 10 jpeg images, 11 TCP connections are sequentially opened.

- **Persistent** (default in HTTP/1.1): The server maintains the TCP connection opened until an inactivity time. All 11 objects would be sent over the same TCP connection.

- Persistent connections with **pipelining** (supported only in HTTP/1.1): The client issues new requests as soon as it encounter new references, even if the objects have been not completely downloaded.
Unit 5. Network applications

Web – Caching and Proxies

**Caching:** The client stores downloaded pages in a local cache. Conditional GET requests are used to download pages if necessary. It can use the Date and/or Etag:

```plaintext
GET /index.html HTTP/1.1
Host: www.example.com
If-Modified-Since: October 21, 2002 4:57 PM
If-None-Match: "686897696a7c876b7e"
```

**Proxy server:** Acts as an intermediary for requests from clients.

- **Advantages:**
  - Security (the proxy may reject the access to unauthorized servers)
  - Logs
  - Caching
  - Save public IP addresses (only the proxy may have access to the Internet)
  - ...

![Diagram of network applications with clients, proxy, and server]

Llorenç Cerdà-Alabern, Leandro Navarro i Jaime Delgado
Unit 5. Network applications

Web – web based applications

Components:

- **Presentation**: A web browser (client side).
- **Engine** generating “on the fly” HTML pages (server side).
  - Languages:
    - Java.
    - Other: ASP, CGI, ColdFusion, Perl, Python...
- **Storage**: a database (e.g. mysql).

Benefits:

- Fast to deploy and upgrade (only server side).
- Only a compatible browser is required at the client side.
- Provide cross-platform compatibility (i.e., Windows, Mac, Linux, etc.)
Unit 5. Network applications

Outline

- DNS
- Email
- Web
- HTML & XML
Unit 5. Network applications

HTML – Hyper-Text Markup Language, HTML

- In 1986 ISO standardized the Standard Generalized Markup Language (SGML). SGML introduced the <> syntax, and has been used in large documentation projects.
- Tim Berners-Lee defined HTML in 1989 inspired in SGML. HTML design mail goal was displaying formatted text documents with hyperlinks (including links to other documents) in web browsers.
- Based on tags e.g. <head> data </head>
- Example:

```html
<html>
<head>
 <title>Basic html document</title>
</head>
<body>
 <h1>First Heading</h1>
 <p>first paragraph.</p>
</body>
</html>
```

Terminology:
- element
- attribute
- text
Unit 5. Network applications

HTML – Hyper-Text Markup Language, HTML

- HTML features (1):
  - **Forms**: The document accept user inputs that are sent to the server
  - **Scripting**: Allow adding programs. The program executes on the client's machine when the document loads, or at some other time such as when a link is activated.

- **javascript example**:

```html
<html>
<head>
 <script type="text/javascript">
 function displaymessage() {
 alert("Hello World!");
 }
 </script>
</head>
<body>
 <form>
 <input type="button" value="Click me!" onclick="displaymessage()"/>
 </form>
</body>
</html>
```
Unit 5. Network applications

HTML – Hyper-Text Markup Language, HTML

- HTML features (2):
  - Cascading Style Sheets, CSS: Allows describing the physical layout in a separate document. E.g. thousand of HTML pages can use the same CSS. If the style must be changed, only the CSS need to be updated.

- CSS Syntax

  CSS example

  Content of the file “mystyle.css”:

  ```css
 h1 {color:red; font-size:20px;}
p {margin-left:20px; color:blue; font-size:18px;}
  ```

  ```html
 <html>
 <head>
 <link rel="stylesheet" type="text/css" href="mystyle.css" />
 </head>
 <body>
 <h1>First Heading</h1>
 <p>first paragraph.</p>
 </body>
 </html>
  ```
Unit 2. Network applications
XML – eXtensible Markup Language

- Designed to transport and store data (HTML to display data).
- Users define their own tags to describe information structures → Process them automatically with applications.

- **Tree structure.**
- **Elements, attributes & text.**
- **Example:**

  ```xml
 <book category="COOKING">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 </book>
  ```
Unit 2. Network applications

XML – eXtensible Markup Language

- A well-formed XML document satisfies a list of syntax rules provided in the specification. It is more rigid than HTML (e.g. all tags must be closed: `<tag> </tag>` or `<tag attribute1=.. />`).

- XML namespaces
  - Allow differentiating elements names defined by different developers.
  - The namespace is defined by the `xmlns` attribute in the start tag of an element.
  - URL are often used as an easy way to define “unique” namespaces.

```xml
<widget xmlns="http://www.widget.org" xmlns:xhtml="http://www.w3.org/TR/xhtml1" type="gadget">
 <head size="medium"/>
 <big><subwidget ref="gizmo"/></big>
 <info>
 <xhtml:head>
 <xhtml:title>Description of gadget</xhtml:title>
 </xhtml:head>
 <xhtml:body>
 <xhtml:hl>Gadget</xhtml:hl>
 A gadget contains a big gizmo
 </xhtml:body>
 </info>
</widget>
```

Source: http://www.brics.dk/~amoeller/XML/xml/htmlvsxml.html
Unit 2. Network applications

XML – eXtensible Markup Language

• XML documents have a tree structure

```xml
<bookstore>
 <book category="COOKING">
 <title lang="en">Everyday Italian</title>
 <author>Giada De Laurentiis</author>
 <year>2005</year>
 <price>30.00</price>
 </book>
 <book category="CHILDREN">
 <title lang="en">Harry Potter</title>
 <author>J K. Rowling</author>
 <year>2005</year>
 <price>29.99</price>
 </book>
 ...
</bookstore>
```

Terminology:
• element
• attribute
• text

Source: http://www.w3schools.com/xml/
Unit 2. Network applications

XML – eXtensible Markup Language

- **Validation** of XML documents
- A "Valid" XML document conforms to the **syntax** of an XML schema.
- The XML schema defines the valid tags and how they can be used.

- **Most known schema languages:**
  - Document Type Definition, DTD:
    - First XML schema language (obsolete now).
    - Does not follow XML syntax.
  - XML Schema Definition, XSD:
    - Follows XML syntax (allows namespaces).
    - Can express more complex rules than DTD.